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Linear model and (regularized) M-estimator

• Consider the linear model
y = Ax0 + z

where A ∈ Rn×p is the design matrix, x0 ∈ Rp is the signal of interest, and z ∈ Rn

is a noise vector.

• Given data (y,A), we estimate x0 by the regularized M-estimator x̂

x̂ ∈ argminx∈Rp

{ n∑
i=1

ρ(yi − e⊤i Ax) +

p∑
j=1

f(xj)
}
,

where ρ is a convex loss and f is a convex regularizer.

• We are interested in the behavior of the risk ∥x̂− x0∥2.
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Numerical simulation 1: Unregularized robust M-estimator

• When f = 0, x̂ is the unregularized M-estimator

x̂ ∈ argminx∈Rp

n∑
i=1

ρ(yi − e⊤i Ax),

where ρ is a robust loss such as

(L1) ρ(x) = |x|, (Huber) ρ(x) =

{
x2/2 |x| ≤ 1
|x| − 1/2 |x| ≥ 1

• The noise vector z is generated according to

z = (zi)
n
i=1

iid∼ 0.8δ0 + 0.2N(0, 1).
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Numerical simulation 1: Unregularized robust M-estimator

• p = 300, iterate=10.

• For L1 loss, perfect recovery
x̂ = x0 holds for sufficiently large
n.

• For the Huber loss, the perfect
recovery is impossible.
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Numerical simulation 2: L1 loss and L1 penalty

• Set ρ(·) = | · | and f(·) = | · | so that x̂ is the L1-penalized LAD estimator

x̂ ∈ argminx∈Rp ∥y −Ax∥1 + λ∥x∥1,

where λ > 0 is a regularization parameter.

• The noise vector z and signal x0 are generated according to

z = (zi)
n
i=1

iid∼ 0.7δ0 + 0.3N(0, 1).

x0 = (x0j)
p
j=1

iid∼ 0.9δ0 + 0.1N(0, 10)
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Numerical simulation 2: L1 loss and L1 penalty

• p = 1000, iterate=10.

• When δ = n/p is small, perfect
recovery is impossible for any λ

• When δ = n/p is large, perfect
recovery is possible for some λ.
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Goal: characterization of risk behavior

• Goal: Characterization of the risk of the (regularized) M-estimator

x̂ ∈ argminx∈Rp

{ n∑
i=1

ρ(yi − e⊤i Ax) +

p∑
j=1

f(xj)
}
.

• More precisely, we are interested in the questions below

What is the condition under which perfect recovery is possible?
If the perfect recovery is possible, what is the minimum sample size n?

• To answer these questions, we consider the proportional asymptotic regime.
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Proportional asymptotic regime

Assumption

• The design matrix A ∈ Rn×p has iid entries N(0, 1/p).

• Sample size n and feature dimension p are increasing such that

n/p → δ ∈ (0,∞) (proportional regime)

• The signal x0 ∈ Rp and the noise vector z ∈ Rn have iid marginals

x0 = (x01, . . . , x0p)
iid∼X, z = (z1, . . . , zn)

iid∼ Z,

for some scalar random variables (X,Z).

• Proportional regime has received attention from fields such as Deep Learning,
Statistical Physics, Compressed sensing, etc.

• [Thrampoulidis et al., 2018] gives the precise asymptotics of risk behavior (next
slide)
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Asymptotic error of M-estimator in proportional regime

Theorem (Thrampoulidis et al. [2018])

Let α∗ be the solution to the nonlinear system below with positive unknown (α, β, κ, ν):

α2 = E
[(
prox[ν−1f ](ν−1βH +X)−X

)2]
β2κ2 = δ E

[(
αG+ Z − prox[κρ](αG+ Z)

)2]
νακ = δ E

[
G ·

(
αG+ Z − prox[κρ](αG+ Z)

)]
κβ = E

[
H ·

(
prox[ν−1f ](ν−1βH +X)−X

)] for


G ∼ N (0, 1),

H ∼ N (0, 1),

X =d x0j ,

Z =d zi.

,

where prox[f ](u) = argminx∈R(u− x)2/2 + f(x) is the proximal operator. Then, under
the proportional regime p/n → δ, we have

p−1∥x̂− x0∥2 →P α2
∗.

• The authors assumed that the nonlinear system admits a unique solution.

• The existence and uniqueness of solution to the nonlinear system are unknown for a
general pair of loss and penalty.
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Previous work on existence and uniqueness of solution is limited

When ρ(x) = x2/2, the nonlinear system with four unknowns is reduced to a system
with two unknowns (α, β).

• For f(x) = x2/2 (Ridge), the solution has a closed form.

• For f(x) = |x| (Lasso), Miolane and Montanari [2021] show the uniqueness and
existence of the solution to the nonlinear system, but the proof is specific to the
least square loss

When f = 0, the nonlinear system is reduced to a system with two unknowns.

• The uniqueness is proved by Donoho and Montanari [2016] for strongly convex
losses ρ, which excludes a large family of robust losses such as L1 loss and Huber
loss.

• The existence has not yet been shown.
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Overview of main result

Theorem

1 For given (Z,X, ρ, f) satisfying mild assumptions, there exists some δ0 ∈ (0,∞] s.t.

δ(= lim n
p ) > δ0 ⇒ P(perfect recovery x̂ = x0) → 1,

δ < δ0 ⇒ P(perfect recovery x̂ = x0) → 0.

2 When δ < δ0, the nonlinear system admits a unique positive solution
(α∗, β∗, κ∗, ν∗) and p−1∥x̂− x0∥2 →p α2

∗ > 0.

• The existence of threshold δ0 is a consequence of the kinematic formula in
Amelunxen et al. [2014] and Han and Ren [2022].

• The main contribution is to establish the second point. We prove it by constructing
a ‘dual’ infinite-dimensional constrained optimization problem on a Hilbert space
such that the existence and uniqueness of the solution to this dual optimization
problem implies the existence and uniqueness of the solution to the nonlinear
system.
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Let us start with the unregularized case (f = 0)
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Unregularized case (f = 0)

• In this case, x̂ is the unregularized M-estimator

x̂ ∈ argminx∈Rp

n∑
i=1

ρ(yi − e⊤i Ax).

• Assume δ = lim n
p > 1 otherwise x̂ is ill-defined.

• Using prox[f ](x) = x for f = 0, the nonlinear system of interest is reduced to

α2 = δ E
[
((αG+ Z)− prox[κρ](αG+ Z))2

]
α = δ E

[
((αG+ Z)− prox[κρ](αG+ Z))G

] for

{
G ∼ N (0, 1),

Z =d zi

with positive unknown (α, κ).

• p−1∥x̂− x0∥2 →p α2
∗ for the solution (α∗, κ∗) is proved by Donoho and Montanari

[2016], El Karoui et al. [2013] among others, provided that such solution is uniquely
exists.
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Existence and uniqueness of solution in the unregularized case

Let δ0 be the positive scalar

δ0 =
1

(1− inft>0 E[dist(G, t∂ρ(Z))2])+
∈ (0,∞],

where dist(·, S) = infu∈R(· − u)2 for any set S ⊂ R.

Theorem (unregularized case)

Assume ρ is Lipschitz with {0} = argminx ρ(x) and P(Z ̸= 0) > 0. Then,

δ(= lim n
p ) > δ0 ⇒ P(perfect recovery x̂ = x0) → 1,

δ < δ0 ⇒ P(perfect recovery x̂ = x0) → 0.

When δ < δ0, the nonlinear system admits a unique positive solution (α∗, κ∗).

When δ0 = ∞, the perfect recovery is always impossible.
Q. When does δ0 = ∞ hold? (next slide)
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When does the case δ0 = ∞ occur?

δ > δ0 ⇒ P(x̂ = x0) → 1

δ < δ0 ⇒ P(x̂ = x0) → 0
for δ0 =

1

(1− inft>0 E[dist(G, t∂ρ(Z))2])+

Note δ0 = +∞ iff inft>0 E[dist(G, t∂ρ(Z))2] ≥ 1. For all t > 0,

E[dist(G, t∂ρ(Z))2] ≥ E[I{ρ is differentiable at Z}(G− tρ′(Z))2]

≥ P(ρ is differentiable at Z) (by G ∼ N(0, 1) ⊥⊥ Z),

so the sufficient condition for δ0 = +∞ is

P(ρ is differentiable at Z) = 1.

Example of (ρ, Z) satisfying this condition:

• ρ is differentiable such as the Huber loss

• ρ has a finite point of discontinuities, e.g., ρ(x) = |x|, and Z is continuous.
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Numerical simulation

Z = 0.8 · δ0 + 0.2 ·N(0, 1), p = 300, iterate=10, dash-line = theory
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Proof outline: “Dual” optimization problem on Hilbert space
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Proof of existence of solution in the unregularized case

Let H be the Hilbert space

H := {v : R2 → R : E[(G,Z)2] < +∞},

and define L : H → R and G : H → R as

L : H → R, v 7→ E[ρ(v(G,Z) + Z)− ρ(Z)],

G : H → R, v 7→ E[v(G,Z)2]1/2 − E[v(G,Z)G]/
√

1− δ−1.

Theorem (Existence)

The constrained optimization minG(v)≤0 L(v) admits a solution v∗ ∈ H/{0}, and there
exists an associated lagrange multiplier µ∗ > 0 such that v∗ solves the unconstrained
optimization minv∈H L(v) + µ∗G(v). Then, the positive scalar (α∗, κ∗) defined as

α∗ = E[v2∗]1/2/
√

1− δ−1, κ∗ = E[v2∗]1/2/µ∗

is a solution to the nonlinear system.
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Proof of uniqueness of solution in the unregularized case

Recall that L : H → R and G : H → R are defined as

L : H → R, v 7→ E[ρ(v(G,Z) + Z)− ρ(Z)],

G : H → R, v 7→ E[v(G,Z)2]1/2 − E[v(G,Z)G]/
√

1− δ−1.

Theorem (Uniqueness)

If (α∗, κ∗) ∈ R2
>0 is a solution to the nonlinear system, then v∗ ∈ H defined as

v∗ : (G,Z) 7→ prox[κ∗ρ](α∗G+ Z)− Z

solves the constrained optimization problem minv∈H:G(v)≤0 L(v).
• If v∗∗ ∈ H is also a minimizer of minv∈H:G(v)≤0 L(v), then v∗∗ is necessarily
proportional to v∗.

• If (α∗∗, κ∗∗) ∈ R2
>0 is another solution to the nonlinear sysystem, then we must

have α∗∗ = α∗ and κ∗∗ = κ∗.
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Summary of proof
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When does the perfect recovery x̂ = x0 happen?

• Assume that ρ is convex and Lipschitz with {0} = argminx ρ(x). Let x̂ be the
unregularized M-estimator

x̂ ∈ argminx∈Rp

n∑
i=1

ρ(yi − e⊤i Ax)

and assume n > p.

• By the KTT condition and y = Ax0 + z, perfect recovery (x̂ = x0) holds iff

A⊤∂ρ(z) ∋ 0p,

where z ∈ Rn is the noise vector and ∂ρ(z) =×n
i=1 ∂ρ(zi) ⊂ Rn.

• Since z = (z1, . . . , zn)
iid∼ Z, if P(Z = 0) = 1 then ∂ρ(z) ∋ 0p also holds with

probability 1, so let us assume

P(Z ̸= 0) > 0

to avoid this nontrivial situation.
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When does the perfect recovery x̂ = x0 happen?

• The iff condition A⊤∂ρ(z) ∋ 0p for the perfect recovery is equivalent to

ker(A⊤) ∩ Cz ̸= ∅ for Cz := cone(∂ρ(z)) = ∪t≥0∂(tρ(z))

• Since A ∈ Rn×p has iid N(0, 1/p) entries,

ker(A⊤) ∼ Unif{S ⊂ Rn : dim(S) = n− p},

so Amelunxen et al. [2014] implies

d(Cz) + (n− p) ≫ n ⇒ P(Perfect recovery|z) → 1

d(Cz) + (n− p) ≪ n ⇒ P(Perfect recovery|z) → 0

• Here, d(Cz) is the statistical dimension of the cone Cz

d(Cz) := n− E[dist(g, Cz)
2|z] for g ∼ N(0n, In)

where dist(·, S) = infu∈S ∥ · −u∥2 for any set S ⊂ Rn
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When does the perfect recovery x̂ = x0 happen?

• Recall that for d(Cz) = n− E[dist(g, Cz)
2|z],

d(Cz) + (n− p) ≫ n ⇒ P(P.R.|z) → 1

d(Cz) + (n− p) ≪ n ⇒ P(P.R.|z) → 0

• The Gaussian Poincaré inequality and standard convex analysis yield

n−1 d(Cz) → 1− inf
t>0

E[dist(G, t∂ρ(Z))2].

• Combined with n/p → δ, we are left with

1− inf
t>0

E[dist(G, t∂ρ(Z))2]− δ−1 > 0 ⇒ P(perfect recovery) → 1,

1− inf
t>0

E[dist(G, t∂ρ(Z))2]− δ−1 < 0 ⇒ P(perfect recovery) → 0,

which gives the threshold δ0 = 1/(1− inft>0 E[dist(G, t∂ρ(Z))2])+.
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Regularized case (f ̸= 0)
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Regularized case (f ̸= 0)

• x̂ is the regularized M-estimator

x̂ ∈ argminx∈Rp

n∑
i=1

ρ(yi − e⊤i Ax) +

p∑
j=1

λf(xj)

and the nonlinear system of interest is

α2 = E
[(
prox[ν−1λf ](ν−1βH +X)−X

)2]
β2κ2 = δ E

[(
αG+ Z − prox[κρ](αG+ Z)

)2]
νακ = δ E

[
G ·

(
αG+ Z − prox[κρ](αG+ Z)

)]
κβ = E

[
H ·

(
prox[ν−1λf ](ν−1βH +X)−X

)] for


G ∼ N (0, 1),

H ∼ N (0, 1),

X =d x0j ,

Z =d zi.

,

with positive unknown (α, β, κ, ν).

• p−1∥x̂− x0∥2 →p α2
∗ for the solution (α∗, κ∗, β∗, ν∗) is proved by Thrampoulidis

et al. [2018] provided that such solution uniquely exists.

25 / 31



Existence and uniqueness of solution in the regularized case

Let δ0 be the positive scalar

δ0 =
inft>0 E[dist(H, t∂f(X))2]

(1− inft>0 E[dist(G, t∂ρ(Z))2])+
∈ (0,∞],

where dist(·, S) = infu∈R | · −u| for any set S ⊂ R.

Theorem

Assume that ρ and f are Lipschitz, and satisfying mild conditions. Then,

δ(= lim n
p ) > δ0 ⇒ P(perfect recovery x̂ = x0) → 1,

δ < δ0 ⇒ P(perfect recovery x̂ = x0) → 0.

When δ < δ0, the nonlinear system admits a unique positive solution (α∗, β∗, κ∗, ν∗).
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Numerical simulation: L1 loss and L1 penalty

Z = 0.7 · δ0 + 0.3 ·N(0, 1), X = 0.9 · δ0 + 0.1 ·N(0, 10),
p = 500, iterate=10, dash-line = theory
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Proof of existence in the regularized case

Let H be the product of Hilbert spaces

H := HZ ×HX ,

{
HZ := {v : R2 → R, E[v(G,Z)2] < +∞}
HX := {w : R2 → R, E[w(H,X)2] < +∞}

and define L : H → R and G : H → R as

L : H → R, (v, w) 7→ δ E[ρ(v +W )− ρ(W )] + E[f(w +X)− f(X)],

G : H → R, (v, w) 7→ T (v, w)− δ−1/2 E[Hw],

where T (v, w) is defined by

T (v, w) :=
√(

E[w2]1/2 − E[vG]
)2
+
+ E[Π⊥

G(v)
2] with Π⊥

G(v) = v − E[vG]G.
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Proof of existence in the regularized case

L : H → R, (v, w) 7→ δ E[ρ(v +W )− ρ(W )] + E[f(w +X)− f(X)],

G : H → R, (v, w) 7→ T (v, w)− δ−1/2 E[Hw].

Theorem (Existence)

The constrained optimization minG(v,w)≤0 L(v, w) admits a nonzero solution
(v∗, w∗) ∈ H, and there exists an associated lagrange multiplier µ∗ > 0 such that
(v∗, w∗) solves the unconstrained optimization min(v,w)∈H L(v, w) + µ∗G(v, w). Then,
the positive scalar (α∗, κ∗, β∗, ν∗) defined as

α∗ = E[w2
∗]

1/2, β∗ =
µ∗√
δ
, κ∗ =

δ

µ∗
T (v∗, w∗), ν∗ = µ∗

1− E[w2
∗]

−1/2 E[v∗G]

T (v∗, w∗)

provide a solution to the nonlinear system.
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Proof of uniqueness in the regularized case

Theorem (Uniqueness)

If (α∗, β∗, κ∗, ν∗) ∈ R4
>0 is a solution to the nonlinear system, then (v∗, w∗) ∈ H defined

as

v∗ : (G,Z) 7→ prox[κ∗ρ](α∗G+ Z)− Z

w∗ : (H,X) 7→ prox[ν−1
∗ f ](ν−1

∗ β∗H +X)−X

solves the constrained optimization problem min(v,w)∈H:G(v,w)≤0 L(v, w).
• If (v∗∗, w∗∗) ∈ H is also a minimizer of min(v,w)∈H:G(v,w)≤0 L(v, w), then (v∗∗, w∗∗)
is necessarily proportional to (v∗, w∗).

• If (α∗∗, β∗∗, κ∗∗, ν∗∗) ∈ R4
>0 is another solution to the nonlinear sysystem, then we

must have (α∗∗, β∗∗, κ∗∗, ν∗∗) = (α∗, β∗, κ∗, ν∗).
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Summary

• We showed the existence and uniqueness of the solution to the nonlinear system
characterizing the asymptotic error of (regularized) M-estimator in the proportional
regime.

• The condition under which we derive this result is on the side of phase transition
where perfect recovery is impossible.

• In the proof, we construct a “dual” convex optimization problem on a Hilbert
space, which gives an explicit solution to the nonlinear system of interest.

• This proof technique can be applied to other settings (e.g. single index model)
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Derive potential L and constraint G from CGMT

Recall
minimize
(v,w)∈H

L(v, w) subject to G(v, w) ≤ 0,

where

L(v, w) = δ E[ρ(v +W )− ρ(W )] + E[f(w +X)− f(X)],

G(v, w) =
√
(∥w∥ − E[vG])2+ + ∥Π⊥

G(v)∥2 − δ−1/2 E[Hw].

We derive L and G from Convex Gaussian Min-Max Theorem (CGMT) (cf.
Thrampoulidis et al. [2018]).
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Derive potential L and constraint G from CGMT

By the change of variables x 7→ w = (x− x0)/
√
p, we have

x̂ =
√
pŵ + x0 so that p−1∥x̂− x0∥2 = ∥ŵ∥2,

where ŵ solves

min
w∈Rp

1

p

n∑
i=1

ρ(zi − e⊤i
√
pAw) +

1

p

p∑
j=1

f(x0j +
√
pwj).

Introducing new variable
√
nv = −√

pAw, letting ρ̄(v) := 1
n

∑n
i=1 ρ(

√
nvi) and

f̄(w) := 1
p

∑p
j=1 f(

√
pwj), the last display can be written as

min
w∈Rp,v∈Rn

max
u∈Rn

−u⊤v +
1√
n
u⊤(

√
pA)(−w) + δρ̄

( z√
n
+ v

)
+ f̄

( x0√
p
+w

)
.
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Derive potential L and constraint G from CGMT

min
w∈Rp,v∈Rn

max
u∈Rn

−u⊤v +
1√
n
u⊤(

√
pA)(−w) + δρ̄

( z√
n
+ v

)
+ f̄

( x0√
p
+w

)
.

Noting A has iid N(0, 1/p) entries, using CGMT, the min-max problem is approximately
equal to

min
w∈Rp,v∈Rn

max
u∈Rn

−u⊤v +
∥u∥(−w)⊤h+ ∥w∥u⊤g√

n
+ δρ̄

( z√
n
+ v

)
+ f̄

( x0√
p
+w

)
for independent h ∼ N (0p, Ip) and g ∼ N (0n, In).
By simple algebra, the above display is reduced to

min
w∈Rp,v∈Rn

δρ̄
( z√

n
+ v

)
+ f̄

( x0√
p
+w

)
s.t. ∥ − v + ∥w∥ g√

n
∥ ≤ δ−1/2w⊤ h

√
p
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Derive potential L and constraint G from CGMT

min
w∈Rp,v∈Rn

δρ̄
( z√

n
+ v

)
+ f̄

( x0√
p
+w

)
s.t. ∥ − v + ∥w∥ g√

n
∥ ≤ δ−1/2w⊤ h

√
p

Replacing ( z√
n
, x0√

p ,
g√
n
, h√

p) by (Z,X,G,H) and (ρ̄, f̄) by (ρ, f), we are left with

min
v,w

E[δρ(v + Z) + f(w +X)] subject to
∥∥−v + ∥w∥G

∥∥ ≤ δ−1/2 E[Hw].

Here the constraint is equivalent to

⇔
√

∥v∥2 + ∥w∥2 − 2∥w∥E[vG] ≤ δ−1/2 E[Hw],

⇔
√
(∥w∥ − E[vG])2 + ∥v∥2 − E[vG]2 ≤ δ−1/2 E[Hw],

⇔
√

(∥w∥ − E[vG])2 + ∥Π⊥
G(v)∥2 ≤ δ−1/2 E[Hw].

Taking the positive part of (∥w∥ − E[vG])2, we obtain the constraint G.
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