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Problem set up

e The response and feature (y;,x;) € RxRP (i =1,...,n) are i.i.d.
distributed.

e Consider the high-dimensional regime
p/n — constant  for sample size n and dimension p.

o We are interested in an estimator 3 = B(y,X) such that the
prediction risk

E[(y0— 20 8)° |y, X| where (o, @0) =* (i, %)

is small.

o We consider ensemble estimators 3 (next slide).
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Ensemble estimator 3 )
We define ensemble estimator (3 as

follows:
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Prediction risk is U-shape in sub-sample size k
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Ensemble of Ridge estimators.
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Equivalence between subsampling and regularization
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Figure 1 in Du et al. [2023].
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Adaptive tuning of sub-sample size and penalty

(Recall) Ensemble estimator is 8 = 7; SM_ B, where
B € algg%nn ||y1m X1,.8*+9(B), In ~ Uniform{I C [n]: |I| =k}

for each m € [M].

¢ (Goal) Select sub-sample size k and penalty g in a data-driven manner
so that the ensemble estimator 3 achieves a small prediction risk

El(yo — =g B)|y, X] where (yo,z0) =% (v, ;)

e Since the prediction risk is not observable, we need some proxy;
» L-fold cross-validation is biased.
> Leave one out cross-validation is computationally hard due to
high-dimension.
» Generalized cross-validation (GCV).
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Generalized cross validation
For the penalized least square estimator

Bly, X) € argmin { "y~ X6 +9(8)}.

BeRP
Generalized cross-validation (GCV) of 3 is defined by
. — X4|? - ap
(GCV of B) := M where df := tr[X—ﬁ].
n(l — df/n)? oy
Estimator 3  Penalty 9(B) Degrees of freedom df
Lasso Bl 1]
Ridge 21813 tr [X(XTX +npl,)  XT]

. 1
Elastic net  A[B]1 + 511B8I5  tr [Xg(X{Xg+nul,) X /]

Example of df for specific penalties. Here, S = {j€lp: ejT,S' #0} and X¢ is

the sub-matrix of X made of columns indexed in S.
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Consistency of Generalized cross-validation

Theorem (Prediction risk &~ GCV)

; - Xp|°
El(yo — xg B8)%|y, X| ~ Hy—A
[(yo — =9 B)°|y, X] (L= dt/n)?
‘ Penalty ‘ Proof
Patil et al. [2021] Ridge Random Matrix Theory
Celentano et al. [2023] Lasso Convex Gaussian Min-Max Thec
Bellec and Shen [2022] | strongly convex Second order Stein's formulz
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Naive GCV for ensemble estimator

For ensemble estimator 3 = ﬁ Z,Ale B, we can think of the naive-GCV:

A2
naive-GCV ::M where df—tr[ 8ﬁ}

n(1 — df/n)? dy

Q. Does the naive-GCV consistently estimate the prediction risk?

E[(yo — x4 8)°|y, X] < naive-GCV

A. No. The naive-GCV is inconsisntent.

Under some regularity condition, there exists some positive constant
C € (0,1) such that

lim inf P
n—0o0

(‘E[(yo —z) B)?y,

naive-GCV = 1’ Z C) 2 C.
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Overview of main result: corrected-GCV (CGCV)

ly - X8| df \2/n ly1,, — X1,,8m|
CGeV = =2 2_<_~)(*_>M2Z —mIml
n(l —df/n) n — df k(1 —df,,/k)
—_————
=naive-GCV

=:correction

Theorem (Informal)

Either assumption (a) or (b) below is satisfied.

Assumption | Distribution Response y = f(x,¢) Penalty ¢
(a) Gaussian Linear strongly convex
(b) Non-Gaussian Nonlinear Ridge

Then, we have (Prediction error) = CGCV. More precisely,

- -1/ under (a
E[(yo —z( 8)*ly, X] = { gggg-k(i:(_? ) unZer ?bﬁ
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When correction term is small

The theorem implies
_ lly—x8|?
n(1 — df /n)?
N——
=naive-GCV

(Prediction risk) ~ CGCV — correction

where

o df N2 Y1, — X1,.BmlI
correctlon—( df> (%— )MQZ k: —cifm/k)Q .

e Naive-GCV overestimates prediction risk.
o Correction term is exactly 0 when sub-sample size k is n.
o Correction term is O(M~1).
= For infinite-ensemble (M = c0), the naive-GCV is consistent.
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Comparison of CGCV and naive-GCV

Ensemble size M e 1 s 3 e 5 Type mmam Risk @® CGCcVv Y Gcev
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Proof: Second order Stein's fomrula

Theorem (Bellec and Zhang [2021])

For almost surely differentiable function f : R™ — R" and z ~ N (0,, I,,)
we have

E[{="£(x) - V- £#)}] = E[If @I + u{(V£())*}]-

e Many applications in single index model (Bellec, 2022), multinomial

regression (Tan and Bellec, 2023), robust regression (Bellec and
Koriyama, 2023).

14/15



Summary

e The naive-GCV is inconsistent to the prediction error of ensemble
estimators.

e We proposed the corrected GCV and showed its consistency under
Gaussian setting and non-Gaussian setting.

e arXiv:2310.01374
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Appendix
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Consistency of CGCV under assumption (a)

Assumption (a)
o (yi,x;), € R x RP are iid distributed according to

Y = m;l—ﬁ* +e€, z~N(0,X), ¢ NN(O,O'2)

for some 3* € RP, ¥ = 0 and o > 0.
e g is strongly convex with respect to X ? (e.g., Ridge, Elastic net).
e p = O(k) for sub-sample size k.

the map 3 — g(8) — uB " 28 is convex for some > 0

Theorem (Prediction risk ~ GCCV)

If the assumption (a) is satisfied, we have

E[(yo — xd B)2y, X] = [1 + Op(n~/2)] - CGCV asn — o
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Consistency of CGCV under Assumption (b)

Assumption (b)
e g(B) = \||B||? for some A > 0.
o Elyi] = 0 and E[y}*°] < 400 for some § > 0.
o x;, =1 21/22; for some ¥ = 0 and z; € R has iid entries such that

Elz;] =0, E[zfj] =1, and E[z?]*‘s] < +o00.

e p/n— ¢ € (0,00), p/k = ¢ € [$,00]. )

E[(yo — 2 B)%|ly, X] = CGCV+0p(1) asn — +oo

.
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Proof outline

Prediction risk of 3, denoted by R(83), can be written as

R(B) = E[(yo — 4 8)*|y, X]
=E[{eo— 2] (8- 61y, X| by yo =8 +e
:O-Q—i_(/é_ﬂ*)z(/é_ﬁ*) by mONN(Op72)7 €0NN(O>G2)'

Thus, the prediction risk of the ensemble 8 = ﬁ fozl Bm is given by
1 < 1 &
2 - 2 ¥ - 2 %
R(B) = o +{(3= > Bn) - 8 }2{(Mm221ﬁm) )

M M
5 30 [0? 4 (B - 8956 - 8)].
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Proof outline
The naive-GCV for 3 M Zm 1,6m is given by

ey~ Y= XBIP s S X (y — XB) Ty — XBy)

n(1 —df /n)? n(1 —df /n)?

For all m,¢ € [M], we have

(v = XBn) (y = XB) ~ |02 + (B — B Z(Be — 8] - Dot

df,,df
where Dy = n — dfy, — dfy +—2—5 |1, N .
| I || Le| )
Using this lemma,
M M
1 Dy
naive-GCV & - ZZ[U (B — BB -]

m=1 f=1 n(1 —df/n)?
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Proof outline

Lemma (Concentration of D,, )
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Obtain CGCV

We have shown that

> 1 n (df /n)? M .
R(B) ~ naive-GCV — W(E — 1)m Z R(Bn).

Using (prediction risk of B,,,) ~ (GCV of B,, fitted on (y;, &;)icr,,)

Y1, — X1,,8m|
R(Bn) ~ k(1 —df,,/k)

we are left with

1 n (df/n Y1, — X1, B
R(,@) (naive-GCV) — W(E - éf/n Z H 11 _ dfl /k)2H
=CGCV
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Proof of Lemma 1: Second order Stein's formula

Recall that Lemma 1 claims
(0% + (B = B TS(Be = BY)) - Done ~ (y = X ) T (y — X0,

where D,y = n — df,, dfg—i—'dlmedIf“‘]I N 1y.

Theorem (Bellec and Zhang [2021])

For almost surely differentiable function f : R" — R™ and z ~ N (0, I,,),
we have

E[{z7f(z) - V- £()}’] =E[If @2 +u{(VF(=)"}]-
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