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Problem set up

• The response and feature (yi,xi) ∈ R× Rp (i = 1, . . . , n) are i.i.d.
distributed.

• Consider the high-dimensional regime

p/n→ constant for sample size n and dimension p.

• We are interested in an estimator β̂ = β̂(y,X) such that the
prediction risk

E
[(
y0 − x⊤

0 β̂
)2|y,X]

where (y0,x0) =
d (yi,xi)

is small.

• We consider ensemble estimators β̃ (next slide).
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Ensemble estimator β̃
We define ensemble estimator β̃ as
follows:

1 Subsampling

(Im)Mm=1
iid∼ Uniform{I ⊂ [n] : |I| = k}

for some integers k ≤ n and M .

2 Fit the penalized least square

β̂m ∈ argmin
β∈Rp

1

k
∥yIm−XImβ∥2+g(β)

for some convex function
g : Rp → R.

3 Ensemble (β̂m)Mm=1 together

β̃ =
1

M

M∑∑∑
m=1

β̂m.
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Prediction risk is U-shape in sub-sample size k

Ensemble of Ridge estimators.
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Equivalence between subsampling and regularization

Figure 1 in Du et al. [2023].
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Adaptive tuning of sub-sample size and penalty

(Recall) Ensemble estimator is β̃ = 1
M

∑M
m=1 β̂m where

β̂m ∈ argmin
β∈Rp

1

k
∥yIm−XImβ∥2+g(β), Im ∼ Uniform

{
I ⊂ [n] : |I| = k

}
for each m ∈ [M ].

• (Goal) Select sub-sample size k and penalty g in a data-driven manner
so that the ensemble estimator β̃ achieves a small prediction risk

E[(y0 − x⊤
0 β̃)

2|y,X] where (y0,x0) =
d (yi,xi)

• Since the prediction risk is not observable, we need some proxy;
▶ L-fold cross-validation is biased.
▶ Leave one out cross-validation is computationally hard due to

high-dimension.
▶ Generalized cross-validation (GCV).
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Generalized cross validation
For the penalized least square estimator

β̂(y,X) ∈ argmin
β∈Rp

{ 1

n
∥y −Xβ∥2 + g(β)

}
,

Generalized cross-validation (GCV) of β̂ is defined by

(GCV of β̂) :=
∥y − Xβ̂∥2

n(1 − d̂f/n)2
where d̂f := tr

[
X

∂β̂

∂y

]
.

Estimator β̂ Penalty g(β) Degrees of freedom d̂f

Lasso λ∥β∥1 |Ŝ|
Ridge µ

2∥β∥
2
2 tr

[
X

(
X⊤X + nµIp

)−1
X⊤]

Elastic net λ∥β∥1 + µ
2∥β∥

2
2 tr

[
XŜ

(
X⊤

Ŝ
XŜ + nµIp

)−1
X⊤

Ŝ

]
Example of d̂f for specific penalties. Here, Ŝ = {j ∈ [p] : e⊤j β̂ ̸= 0} and XŜ is

the sub-matrix of X made of columns indexed in Ŝ.
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Consistency of Generalized cross-validation

Theorem (Prediction risk ≈ GCV)

E
[
(y0 − x⊤

0 β̂)
2|y,X

]
≈ ∥y −Xβ̂∥2

n(1− d̂f/n)2

Penalty Proof

Patil et al. [2021] Ridge Random Matrix Theory
Celentano et al. [2023] Lasso Convex Gaussian Min-Max Theorem
Bellec and Shen [2022] strongly convex Second order Stein’s formula
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Naive GCV for ensemble estimator

For ensemble estimator β̃ = 1
M

∑M
m=1 β̂m, we can think of the naive-GCV:

naive-GCV :=
∥y −Xβ̃∥2

n(1− d̃f/n)2
where d̃f = tr

[
X
∂β̃

∂y

]
Q. Does the naive-GCV consistently estimate the prediction risk?

E
[
(y0 − x⊤

0 β̃)
2|y,X

] ?
≈ naive-GCV

A. No. The naive-GCV is inconsisntent.

Theorem

Under some regularity condition, there exists some positive constant
C ∈ (0, 1) such that

lim inf
n→∞

P
(∣∣∣E[(y0 − x⊤

0 β̂)
2|y,X

]
naive-GCV

− 1
∣∣∣ ≥ C

)
≥ C.
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Overview of main result: corrected-GCV (CGCV)

CGCV :=
∥y −Xβ̃∥2

n(1− d̃f/n)2︸ ︷︷ ︸
=naive-GCV

−
( d̃f

n− d̃f

)2 (n
k
− 1

) 1

M2

M∑
m=1

∥yIm −XImβ̂m∥2

k(1− d̂fm/k)2︸ ︷︷ ︸
=:correction

.

Theorem (Informal)

Either assumption (a) or (b) below is satisfied.
Assumption Distribution Response y = f(x, ϵ) Penalty g

(a) Gaussian Linear strongly convex

(b) Non-Gaussian Nonlinear Ridge

Then, we have (Prediction error) ≈ CGCV. More precisely,

E
[
(y0 − x⊤

0 β̃)
2|y,X

]
=

{
CGCV ·

(
1 +Op(n

−1/2)
)

under (a)
CGCV+ op(1) under (b)
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When correction term is small

The theorem implies

(Prediction risk) ≈ CGCV =
∥y −Xβ̃∥2

n(1− d̃f/n)2︸ ︷︷ ︸
=naive-GCV

− correction

where

correction =
( d̃f

n− d̃f

)2 (n
k
− 1

) 1

M2

M∑
m=1

∥yIm −XImβ̂m∥2

k(1− d̂fm/k)2
.

• Naive-GCV overestimates prediction risk.

• Correction term is exactly 0 when sub-sample size k is n.

• Correction term is O(M−1).
⇒ For infinite-ensemble (M = ∞), the naive-GCV is consistent.
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Comparison of CGCV and naive-GCV
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Proof: Second order Stein’s fomrula

Theorem (Bellec and Zhang [2021])

For almost surely differentiable function f : Rn → Rn and z ∼ N (0n, In),
we have

E
[{

z⊤f(z)−∇ · f(z)
}2

]
= E

[
∥f(z)∥2 + tr

{(
∇f(z)

)2}]
.

• Many applications in single index model (Bellec, 2022), multinomial
regression (Tan and Bellec, 2023), robust regression (Bellec and
Koriyama, 2023).
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Summary

• The naive-GCV is inconsistent to the prediction error of ensemble
estimators.

• We proposed the corrected GCV and showed its consistency under
Gaussian setting and non-Gaussian setting.

• arXiv:2310.01374
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Appendix
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Consistency of CGCV under assumption (a)

Assumption (a)

• (yi,xi)
n
i=1 ∈ R× Rp are iid distributed according to

yi = x⊤
i β

∗ + ϵi, xi ∼ N (0p,Σ), ϵi ∼ N (0, σ2)

for some β∗ ∈ Rp, Σ ≻ 0 and σ > 0.

• g is strongly convex with respect to Σ a (e.g., Ridge, Elastic net).

• p = O(k) for sub-sample size k.

athe map β 7→ g(β)− µβ⊤Σβ is convex for some µ > 0

Theorem (Prediction risk ≈ GCCV)

If the assumption (a) is satisfied, we have

E
[
(y0 − x⊤

0 β̃)
2|y,X

]
=

[
1 +OP (n

−1/2)
]
· CGCV as n→ ∞
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Consistency of CGCV under Assumption (b)

Assumption (b)

• g(β) = λ∥β∥2 for some λ > 0.

• E[yi] = 0 and E[y4+δ
i ] < +∞ for some δ > 0.

• xi =
d Σ1/2zi for some Σ ≻ 0 and zi ∈ Rp has iid entries such that

E[zij ] = 0, E[z2ij ] = 1, and E[z4+δ
ij ] < +∞.

• p/n→ ϕ ∈ (0,∞), p/k → ψ ∈ [ϕ,∞].

Theorem

E
[
(y0 − x⊤

0 β̃)
2|y,X

]
= CGCV+ oP (1) as n→ +∞
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Proof outline

Prediction risk of β̂, denoted by R(β̂), can be written as

R(β̂) = E
[
(y0 − x⊤

0 β̂)
2|y,X

]
= E

[{
ϵ0 − x⊤

0 (β̂ − β∗)
}2|y,X

]
by y0 = x⊤

0 β
∗ + ϵ0

= σ2 + (β̂ − β∗)Σ(β̂ − β∗) by x0 ∼ N (0p,Σ), ϵ0 ∼ N (0, σ2).

Thus, the prediction risk of the ensemble β̃ = 1
M

∑M
m=1 β̂m is given by

R(β̃) = σ2 +
{( 1

M

M∑
m=1

β̂m

)
− β∗

}
Σ
{( 1

M

M∑
m=1

β̂m

)
− β∗

}
=

1

M2

M∑
m=1

M∑
ℓ=1

[
σ2 + (β̂m − β∗)Σ(β̂ℓ − β∗)

]
.
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Proof outline
The naive-GCV for β̃ = 1

M

∑M
m=1 β̂m is given by

naive-GCV =
∥y −Xβ̃∥2

n(1− d̃f/n)2
=

1
M2

∑M
m=1

∑M
ℓ=1(y −Xβ̂m)⊤(y −Xβ̂ℓ)

n(1− d̃f/n)2

Lemma

For all m, ℓ ∈ [M ], we have

(y −Xβ̂m)⊤(y −Xβ̂ℓ) ≈
[
σ2 + (β̂m − β∗)⊤Σ(β̂ℓ − β∗)

]
·Dmℓ,

where Dmℓ = n− dfm−dfℓ+
d̂fmd̂fℓ
|Im||Iℓ|

|Im ∩ Iℓ|.

Using this lemma,

naive-GCV ≈ 1

M2

M∑
m=1

M∑
ℓ=1

[
σ2 + (β̂m − β∗)⊤Σ(β̂ℓ − β∗)

]
· Dmℓ

n(1− d̃f/n)2
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Proof outline

Lemma (Concentration of Dm,ℓ)

Dm,ℓ

n(1− d̃f/n)2
≈ 1 + 1{m = ℓ} · (n

k
− 1)

(d̃f/n)2

(1− d̃f/n)2
.

naive-GCV ≈ 1

M2

M∑
m=1

M∑
ℓ=1

[
σ2 + (β̂m − β∗)⊤Σ(β̂ℓ − β∗)

]
+

1

M2

M∑
m=1

[
σ2 + (β̂m − β∗)⊤Σ(β̂m − β∗)

]
· (n
k
− 1)

(d̃f/n)2

(1− d̃f/n)2

= R(β̃) +
1

M2

M∑
m=1

R(β̂m) · (n
k
− 1)

(d̃f/n)2

(1− d̃f/n)2
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Obtain CGCV

We have shown that

R(β̃) ≈ naive-GCV− 1

M2
(
n

k
− 1)

(d̃f/n)2

(1− d̃f/n)2

M∑
m=1

R(β̂m).

Using (prediction risk of β̂m) ≈ (GCV of β̂m fitted on (yi,xi)i∈Im)

R(β̂m) ≈ ∥yIm −XImβ̂m∥2

k(1− d̂fm/k)
,

we are left with

R(β̃) ≈ (naive-GCV)− 1

M2
(
n

k
− 1)

(d̃f/n)2

(1− d̃f/n)2

M∑
m=1

∥yIm −XImβ̂m∥2

k(1− dfm /k)2︸ ︷︷ ︸
=CGCV
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Proof of Lemma 1: Second order Stein’s formula

Recall that Lemma 1 claims(
σ2 + (β̂m − β∗)⊤Σ(β̂ℓ − β∗)

)
·Dmℓ ≈ (y −Xβ̂m)⊤(y −Xβ̂ℓ),

where Dmℓ = n− dfm−dfℓ+
d̂fmd̂fℓ
|Im||Iℓ| |Im ∩ Iℓ|.

Theorem (Bellec and Zhang [2021])

For almost surely differentiable function f : Rn → Rn and z ∼ N (0n, In),
we have

E
[{

z⊤f(z)−∇ · f(z)
}2

]
= E

[
∥f(z)∥2 + tr

{(
∇f(z)

)2}]
.
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