Corrected generalized cross-validation for finite ensembles of penalized estimators

Takuya Koriyama

University of Chicago

September 4, 2024

- To appear in Journal of the Royal Statistical Society: Series B (2024)
- Joint work with Pierre C. Bellec (Rutgers), Jin-Hong Du (CMU), Kai Tan (Rutgers), and Pratik Patil (UC Berkeley).

Problem set up

- The response and feature $(y_i, x_i) \in \mathbb{R} \times \mathbb{R}^p$ $(i = 1, \ldots, n)$ are i.i.d. distributed.
- Consider the high-dimensional regime

 $p/n \rightarrow$ constant for sample size n and dimension p.

• We are interested in an estimator $\hat{\beta} = \hat{\beta}(y, X)$ such that the prediction risk

$$
\mathbb{E}\Big[\big(y_0 - \bm{x}_0^{\top}\hat{\bm{\beta}}\big)^2 | \bm{y},\bm{X}\Big] \quad \text{where} \quad (y_0,\bm{x}_0) =^d (y_i,\bm{x}_i)
$$

is small.

• We consider ensemble estimators $\tilde{\beta}$ (next slide).

Ensemble estimator β

We define ensemble estimator $\tilde{\beta}$ as follows:

1 Subsampling

 $(I_m)_{m=1}^M \stackrel{iid}{\sim}$ Uniform $\{I\subset [n]:|I|=k\}$

for some integers $k \leq n$ and M.

2 Fit the penalized least square

$$
\hat{\boldsymbol{\beta}}_m \in \argmin_{\boldsymbol{\beta} \in \mathbb{R}^p} \frac{1}{k} \| \boldsymbol{y}_{I_m} {-} \boldsymbol{X}_{I_m} \boldsymbol{\beta} \|^2 {+} g(\boldsymbol{\beta})
$$

for some convex function $g:\mathbb{R}^p\to\mathbb{R}$. $\, {\bf 3} \,$ Ensemble $(\hat{\beta}_m)_{m=1}^M$ together

$$
\tilde{\beta}=\frac{1}{M}\sum_{m=1}^M \hat{\beta}_m.
$$

Prediction risk is U-shape in sub-sample size k

Ensemble of Ridge estimators.

Equivalence between subsampling and regularization

Figure 1 in [Du et al. \[2023\]](#page-15-0).

Adaptive tuning of sub-sample size and penalty

(Recall) Ensemble estimator is $\tilde{\boldsymbol{\beta}} = \frac{1}{M}$ $\frac{1}{M}\sum_{m=1}^{M}\hat{\boldsymbol{\beta}}_{m}$ where

 $\hat{\boldsymbol{\beta}}_m \in \argmin_{\boldsymbol{\beta} \in \mathbb{R}^p }$ 1 $\frac{1}{k} \|\boldsymbol{y}_{I_m} - \boldsymbol{X}_{I_m} \boldsymbol{\beta} \|^2 + g(\boldsymbol{\beta}), \quad I_m \sim \mathsf{Uniform}\big\{I \subset [n] : |I| = k\big\}$

for each $m \in [M]$.

• (Goal) Select sub-sample size k and penalty g in a data-driven manner so that the ensemble estimator $\tilde{\beta}$ achieves a small prediction risk

$$
\mathbb{E}[(y_0 - \boldsymbol{x}_0^\top \tilde{\boldsymbol{\beta}})^2 | \boldsymbol{y}, \boldsymbol{X}] \quad \text{where} \quad (y_0, \boldsymbol{x}_0) =^d (y_i, \boldsymbol{x}_i)
$$

- Since the prediction risk is not observable, we need some proxy;
	- \blacktriangleright L-fold cross-validation is biased.
	- ▶ Leave one out cross-validation is computationally hard due to high-dimension.
	- \triangleright Generalized cross-validation (GCV).

Generalized cross validation

For the penalized least square estimator

$$
\hat{\boldsymbol{\beta}}(\boldsymbol{y},\boldsymbol{X})\in\mathop{\arg\min}\limits_{\boldsymbol{\beta}\in\mathbb{R}^p}\Big\{\frac{1}{n}\|\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}\|^2+g(\boldsymbol{\beta})\Big\},
$$

Generalized cross-validation (GCV) of $\hat{\beta}$ is defined by

$$
(\mathsf{GCV}\text{ of }\hat{\beta}):=\frac{\|y-X\hat{\beta}\|^2}{n(1-\hat{\mathrm{df}}/n)^2}\quad\text{where}\quad\hat{\mathrm{df}}:=\mathrm{tr}\big[X\frac{\partial\hat{\beta}}{\partial y}\big].
$$

Example of $\hat{\rm df}$ for specific penalties. Here, $\hat{S}=\{j\in[p]:e_j^\top\hat{\boldsymbol{\beta}}\neq 0\}$ and $\boldsymbol{X}_{\hat{S}}$ is the sub-matrix of \boldsymbol{X} made of columns indexed in \hat{S} .

Consistency of Generalized cross-validation

Theorem (Prediction risk \approx GCV)

$$
\mathbb{E}\big[(y_0 - \boldsymbol{x}_0^{\top}\hat{\boldsymbol{\beta}})^2|\boldsymbol{y},\boldsymbol{X} \big] \approx \ \frac{\|\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}\|^2}{n(1 - \hat{\mathrm{df}}/n)^2}
$$

Naive GCV for ensemble estimator

For ensemble estimator $\tilde{\boldsymbol{\beta}} = \frac{1}{M}$ $\frac{1}{M}\sum_{m=1}^M \hat{\beta}_m$, we can think of the naive-GCV:

$$
\text{naive-GCV} := \frac{\|\boldsymbol{y} - \boldsymbol{X}\tilde{\boldsymbol{\beta}}\|^2}{n(1-\tilde{\mathrm{df}}/n)^2} \quad \text{where} \quad \tilde{\mathrm{df}} = \mathrm{tr}\big[\boldsymbol{X}\frac{\partial\tilde{\boldsymbol{\beta}}}{\partial \boldsymbol{y}}\big]
$$

Q. Does the naive-GCV consistently estimate the prediction risk?

$$
\mathbb{E}\big[(y_0 - \pmb{x}_0^\top\tilde{\boldsymbol{\beta}})^2|\pmb{y},\pmb{X}\big] \stackrel{?}{\approx} \textsf{naive-GCV}
$$

A. No. The naive-GCV is inconsisntent.

Theorem

Under some regularity condition, there exists some positive constant $C \in (0,1)$ such that

$$
\liminf_{n\to\infty}\mathbb{P}\Big(\Big|\frac{\mathbb{E}\big[(y_0-\boldsymbol{x}_0^{\top}\boldsymbol{\hat{\beta}})^2|\boldsymbol{y},\boldsymbol{X}\big]}{\text{naive-GCV}}-1\Big|\geq C\Big)\geq C.
$$

Overview of main result: corrected-GCV (CGCV)

$$
\text{CGCV} := \underbrace{\frac{\|\pmb{y} - \pmb{X}\tilde{\pmb{\beta}}\|^2}{n(1 - \tilde{\text{df}}/n)^2}}_{\text{ = naive-GCV}} - \underbrace{\left(\frac{\tilde{\text{df}}}{n - \tilde{\text{df}}}\right)^2\left(\frac{n}{k} - 1\right)\frac{1}{M^2}\sum_{m=1}^{M}\frac{\|\pmb{y}_{I_m} - \pmb{X}_{I_m}\hat{\pmb{\beta}}_m\|^2}{k(1 - \hat{\text{df}}_m/k)^2}}_{\text{ = correction}}
$$

Theorem (Informal)

Then, we have (Prediction error) \approx CGCV. More precisely,

$$
\mathbb{E}\big[(y_0 - \boldsymbol{x}_0^\top \tilde{\boldsymbol{\beta}})^2 | \boldsymbol{y}, \boldsymbol{X}\big] = \left\{\begin{array}{ll} \textit{CGCV} \cdot \big(1 + O_p(n^{-1/2})\big) & \textit{under (a)} \\ \textit{CGCV} + o_p(1) & \textit{under (b)} \end{array}\right.
$$

.

When correction term is small

The theorem implies

(Prediction risk)
$$
\approx
$$
 CGCV =
$$
\underbrace{\frac{\|\mathbf{y} - \mathbf{X}\tilde{\beta}\|^2}{n(1 - \tilde{\text{df}}/n)^2}}_{= \text{naive-GCV}} - \text{correction}
$$

where

$$
\text{correction} = \Big(\frac{\tilde{\mathrm{df}}}{n-\tilde{\mathrm{df}}}\Big)^2\,\Big(\frac{n}{k}-1\Big)\,\frac{1}{M^2}\sum_{m=1}^M\frac{\|\boldsymbol{y}_{I_m}-\boldsymbol{X}_{I_m}\hat{\boldsymbol{\beta}}_m\|^2}{k(1-\hat{\mathrm{df}}_m/k)^2}.
$$

- Naive-GCV overestimates prediction risk.
- Correction term is exactly 0 when sub-sample size k is n .
- Correction term is $O(M^{-1})$.

 \Rightarrow For infinite-ensemble $(M = \infty)$, the naive-GCV is consistent.

Comparison of CGCV and naive-GCV

Proof: Second order Stein's fomrula

Theorem [\(Bellec and Zhang \[2021\]](#page-15-4))

For almost surely differentiable function $\bm{f}:\mathbb{R}^n\to\mathbb{R}^n$ and $\bm{z}\sim\mathcal{N}(\bm{0}_n,\bm{I}_n)$, we have

$$
\mathbb{E}\Big[\big\{\boldsymbol{z}^\top \boldsymbol{f}(\boldsymbol{z}) - \nabla\cdot \boldsymbol{f}(\boldsymbol{z})\big\}^2\Big] = \mathbb{E}\Big[\|\boldsymbol{f}(\boldsymbol{z})\|^2 + \text{tr}\big\{\big(\nabla \boldsymbol{f}(\boldsymbol{z})\big)^2\big\}\Big].
$$

• Many applications in single index model (Bellec, 2022), multinomial regression (Tan and Bellec, 2023), robust regression (Bellec and Koriyama, 2023).

Summary

- The naive-GCV is inconsistent to the prediction error of ensemble estimators.
- We proposed the corrected GCV and showed its consistency under Gaussian setting and non-Gaussian setting.
- arXiv:2310.01374

Reference I

- P. C. Bellec and Y. Shen. Derivatives and residual distribution of regularized M-estimators with application to adaptive tuning. In Conference on Learning Theory, 2022.
- P. C. Bellec and C.-H. Zhang. Second-order stein: Sure for sure and other applications in high-dimensional inference. The Annals of Statistics, 49(4):1864–1903, 2021.
- M. Celentano, A. Montanari, and Y. Wei. The lasso with general gaussian designs with applications to hypothesis testing. The Annals of Statistics, 51(5):2194–2220, 2023.
- J.-H. Du, P. Patil, and A. K. Kuchibhotla. Subsample ridge ensembles: Equivalences and generalized cross-validation. In International Conference on Machine Learning, 2023.
- P. Patil, Y. Wei, A. Rinaldo, and R. Tibshirani. Uniform consistency of cross-validation estimators for high-dimensional ridge regression. In International Conference on Artificial Intelligence and Statistics, 2021.

Appendix

Consistency of CGCV under assumption (a)

Assumption (a)

 $\bullet \ \left(y_{i},\boldsymbol{x}_{i}\right) _{i=1}^{n}\in \mathbb{R}\times \mathbb{R}^{p}$ are iid distributed according to

$$
y_i = \boldsymbol{x}_i^{\top} \boldsymbol{\beta}^* + \epsilon_i, \quad \boldsymbol{x}_i \sim \mathcal{N}(\boldsymbol{0}_p, \boldsymbol{\Sigma}), \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2)
$$

for some $\beta^* \in \mathbb{R}^p$, $\Sigma \succ 0$ and $\sigma > 0$.

• g is strongly convex with respect to Σ ^a (e.g., Ridge, Elastic net).

•
$$
p = O(k)
$$
 for sub-sample size k.

 ${}^{\mathsf{a}}$ the map $\boldsymbol{\beta}\mapsto g(\boldsymbol{\beta})-\mu\boldsymbol{\beta}^{\top}\boldsymbol{\Sigma}\boldsymbol{\beta}$ is convex for some $\mu>0$

Theorem (Prediction risk \approx GCCV)

If the assumption (a) is satisfied, we have

$$
\mathbb{E}\big[(y_0 - \boldsymbol{x}_0^\top \tilde{\boldsymbol{\beta}})^2 | \boldsymbol{y}, \boldsymbol{X}\big] = \big[1 + O_P(n^{-1/2})\big] \cdot \text{CGCV} \quad \text{as } n \to \infty
$$

Consistency of CGCV under Assumption (b)

Assumption (b)

•
$$
g(\boldsymbol{\beta}) = \lambda ||\boldsymbol{\beta}||^2
$$
 for some $\lambda > 0$.

- $\mathbb{E}[y_i] = 0$ and $\mathbb{E}[y_i^{4+\delta}] < +\infty$ for some $\delta > 0$.
- $\bullet \; \pmb{x}_i =^d \Sigma^{1/2} \pmb{z}_i$ for some $\pmb{\Sigma}\succ 0$ and $\pmb{z_i} \in \mathbb{R}^p$ has iid entries such that $\mathbb{E}[z_{ij}] = 0$, $\mathbb{E}[z_{ij}^2] = 1$, and $\mathbb{E}[z_{ij}^{4+\delta}] < +\infty$.
- $p/n \to \phi \in (0,\infty)$, $p/k \to \psi \in [\phi,\infty]$.

Theorem

$$
\mathbb{E}\big[(y_0 - \bm{x}_0^\top \tilde{\bm{\beta}})^2 | \bm{y}, \bm{X} \big] = \textit{CGCV} + o_P(1) \quad \textit{as } n \rightarrow +\infty
$$

Proof outline

Prediction risk of $\hat{\beta}$, denoted by $R(\hat{\beta})$, can be written as

$$
\begin{aligned} R(\hat{\boldsymbol{\beta}}) &= \mathbb{E}\big[(y_0 - \boldsymbol{x}_0^\top \hat{\boldsymbol{\beta}})^2 | \boldsymbol{y}, \boldsymbol{X} \big] \\ &= \mathbb{E}\Big[\big\{\epsilon_0 - \boldsymbol{x}_0^\top (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*)\big\}^2 | \boldsymbol{y}, \boldsymbol{X} \Big] \quad \text{by } y_0 = \boldsymbol{x}_0^\top \boldsymbol{\beta}^* + \epsilon_0 \\ &= \sigma^2 + (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*) \boldsymbol{\Sigma} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*) \qquad \qquad \text{by } \boldsymbol{x}_0 \sim \mathcal{N}(\boldsymbol{0}_p, \boldsymbol{\Sigma}), \ \epsilon_0 \sim \mathcal{N}(\boldsymbol{0}, \sigma^2). \end{aligned}
$$

Thus, the prediction risk of the ensemble $\tilde{\boldsymbol{\beta}} = \frac{1}{M}$ $\frac{1}{M}\sum_{m=1}^M \hat{\boldsymbol{\beta}}_m$ is given by

$$
R(\tilde{\boldsymbol{\beta}}) = \sigma^2 + \left\{ \left(\frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_m \right) - \boldsymbol{\beta}^* \right\} \boldsymbol{\Sigma} \left\{ \left(\frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_m \right) - \boldsymbol{\beta}^* \right\}
$$

$$
= \frac{1}{M^2} \sum_{m=1}^{M} \sum_{\ell=1}^{M} \left[\sigma^2 + (\hat{\beta}_m - \boldsymbol{\beta}^*) \boldsymbol{\Sigma} (\hat{\beta}_\ell - \boldsymbol{\beta}^*) \right].
$$

Proof outline

The naive-GCV for $\tilde{\boldsymbol{\beta}} = \frac{1}{M}$ $\frac{1}{M}\sum_{m=1}^M \hat{\boldsymbol{\beta}}_m$ is given by $\|\boldsymbol{y}-\boldsymbol{X}\tilde{\boldsymbol{\beta}}\|^2 \ \hspace{1mm} _ \frac{1}{M^2}\sum_{m=1}^M\sum_{\ell=1}^M (\boldsymbol{y}-\boldsymbol{X}\hat{\boldsymbol{\beta}}_m)^\top (\boldsymbol{y}-\boldsymbol{X}\hat{\boldsymbol{\beta}}_\ell)$

naive-GCV =
$$
\frac{\|\mathbf{y} - \mathbf{A}\mathbf{B}\|^2}{n(1 - \tilde{\mathbf{d}}f/n)^2} = \frac{M^2 \sum_{m=1}^{\infty} \sum_{\ell=1}^{\ell} (\mathbf{y} - \mathbf{A}\mathbf{B}_m) \cdot (\mathbf{y} - \mathbf{A}\mathbf{B}_\ell)}{n(1 - \tilde{\mathbf{d}}f/n)^2}
$$

Lemma

For all $m, \ell \in [M]$, we have

$$
(\mathbf{y} - \mathbf{X}\hat{\beta}_m)^{\top}(\mathbf{y} - \mathbf{X}\hat{\beta}_\ell) \approx \left[\sigma^2 + (\hat{\beta}_m - \beta^*)^{\top} \Sigma (\hat{\beta}_\ell - \beta^*)\right] \cdot D_{m\ell},
$$

where $D_{m\ell} = n - df_m - df_\ell + \frac{\hat{df}_m \hat{df}_\ell}{|I_m||I_\ell|} |I_m \cap I_\ell|.$

Using this lemma,

$$
\text{naive-GCV} \approx \frac{1}{M^2}\sum_{m=1}^M\sum_{\ell=1}^M \Bigl[\sigma^2 + (\hat{\beta}_m - \boldsymbol{\beta}^*)^\top \boldsymbol{\Sigma} (\hat{\beta}_\ell - \boldsymbol{\beta}^*) \Bigr] \cdot \frac{D_{m\ell}}{n(1-\tilde{\mathrm{df}}/n)^2}
$$

Proof outline

Lemma (Concentration of $D_{m,\ell}$)

$$
\frac{D_{m,\ell}}{n(1-\tilde{\mathrm{df}}/n)^2} \approx 1 + \mathbf{1}\{m=\ell\} \cdot (\frac{n}{k} - 1) \frac{(\tilde{\mathrm{df}}/n)^2}{(1-\tilde{\mathrm{df}}/n)^2}.
$$

$$
\begin{split} \text{naive-GCV} &\approx \frac{1}{M^2} \sum_{m=1}^{M} \sum_{\ell=1}^{M} \left[\sigma^2 + (\hat{\beta}_m - \beta^*)^\top \Sigma (\hat{\beta}_\ell - \beta^*) \right] \\ &+ \frac{1}{M^2} \sum_{m=1}^{M} \left[\sigma^2 + (\hat{\beta}_m - \beta^*)^\top \Sigma (\hat{\beta}_m - \beta^*) \right] \cdot (\frac{n}{k} - 1) \frac{(\tilde{\mathbf{df}}/n)^2}{(1 - \tilde{\mathbf{df}}/n)^2} \\ & = R(\tilde{\boldsymbol{\beta}}) + \frac{1}{M^2} \sum_{m=1}^{M} R(\hat{\beta}_m) \cdot (\frac{n}{k} - 1) \frac{(\tilde{\mathbf{df}}/n)^2}{(1 - \tilde{\mathbf{df}}/n)^2} \end{split}
$$

Obtain CGCV

We have shown that

$$
R(\tilde{\boldsymbol{\beta}}) \approx \textsf{naive-GCV} - \frac{1}{M^2} (\frac{n}{k} - 1) \frac{(\tilde{\text{df}}/n)^2}{(1 - \tilde{\text{df}}/n)^2} \sum_{m=1}^{M} R(\hat{\boldsymbol{\beta}}_m).
$$

Using (prediction risk of $\hat{\beta}_m)\approx$ (GCV of $\hat{\beta}_m$ fitted on $(y_i, \bm{x}_i)_{i\in I_m})$

$$
R(\hat{\beta}_m) \approx \frac{\|\mathbf{y}_{I_m} - \mathbf{X}_{I_m}\hat{\beta}_m\|^2}{k(1 - \hat{\mathrm{df}}_m/k)},
$$

we are left with

$$
R(\tilde{\boldsymbol{\beta}}) \approx (\text{naive-GCV}) - \frac{1}{M^2} (\frac{n}{k} - 1) \frac{(\tilde{\text{df}}/n)^2}{(1 - \tilde{\text{df}}/n)^2} \sum_{m=1}^{M} \frac{\|\mathbf{y}_{I_m} - \mathbf{X}_{I_m} \hat{\boldsymbol{\beta}}_m\|^2}{k(1 - \text{df}_m/k)^2}
$$

=CGCV

Proof of Lemma 1: Second order Stein's formula

Recall that Lemma 1 claims

$$
\left(\sigma^2+(\hat{\beta}_m-\boldsymbol{\beta}^*)^\top\boldsymbol{\Sigma}(\hat{\beta}_\ell-\boldsymbol{\beta}^*)\right)\cdot D_{m\ell}\approx(\boldsymbol{y}-\boldsymbol{X}\hat{\beta}_m)^\top(\boldsymbol{y}-\boldsymbol{X}\hat{\beta}_\ell),
$$

where $D_{m\ell}=n-{\rm df}_m-{\rm df}_\ell+\frac{\hat{\rm df}_m\hat{\rm df}_\ell}{|I_m||I_\ell|}|I_m\cap I_\ell|.$

Theorem [\(Bellec and Zhang \[2021\]](#page-15-4))

For almost surely differentiable function $\bm{f}:\mathbb{R}^n\to\mathbb{R}^n$ and $\bm{z}\sim\mathcal{N}(\bm{0}_n,\bm{I}_n)$, we have

$$
\mathbb{E}\Big[\big\{ \boldsymbol{z}^\top \boldsymbol{f}(\boldsymbol{z}) - \nabla\cdot \boldsymbol{f}(\boldsymbol{z}) \big\}^2 \Big] = \mathbb{E}\Big[\|\boldsymbol{f}(\boldsymbol{z})\|^2 + \text{tr}\big\{\big(\nabla \boldsymbol{f}(\boldsymbol{z})\big)^2\big\} \Big].
$$