Asymptotic analysis of parameter estimation for Ewens–Pitman partition

Takuya Koriyama

University of Chicago

September 4, 2024

Table of content

O [Introduction](#page-1-0)

2 [Main result](#page-15-0)

³ [Summary and Future Research](#page-25-0)

4 [Appendix](#page-33-0)

Partition of integers

 $\{U_1, U_2, \ldots, U_k\}$ is said to be a partition of $[n] = \{1, \ldots n\}$ into k blocks if

$$
U_i \neq \emptyset, \quad U_i \cap U_j = \emptyset, \quad \cup_{i=1}^k U_k = [n].
$$

Letting $\mathcal{P}_{n,k}$ be the set of partitions of $[n]$ into k, define \mathcal{P}_n as

$$
\mathcal{P}_n = \cup_{k=1}^n \mathcal{P}_{n,k}.
$$

Example

$$
\mathcal{P}_1 = \Big\{\{\{1\}\}, \qquad \mathcal{P}_2 = \Big\{\{\{1,2\}\}, \{\{1\},\{2\}\}\Big\},
$$

$$
\mathcal{P}_3 = \Big\{\{\{1,2,3\}\}, \{\{2,3\},\{1\}\}, \{\{1,3\},\{2\}\}, \{\{1\},\{2\},\{3\}\}\Big\}.
$$

We denote the element of \mathcal{P}_n by Π_n .

Sequential partitions of integers

Starting from $\Pi_1 = \{\{1\}\}\$, we consider a sequence of partitions.

 $\Pi_2 = \{ \{1,2\} \} \rightarrow \Pi_3 = \{ \{1,2\}, \{3\} \} \rightarrow \Pi_4 = \{ \{1,2,4\}, \{3\} \} \rightarrow$

Ewens–Pitman partition is a stochastic process over the sets of partitions $(\mathcal{P}_n)_{n=1}^{\infty}$.

Ewens–Pitman partition (α, θ)

Ewens–Pitman partition is a stochastic process over $(\mathcal{P}_n)_{n=1}^\infty.$

- $\Pi_1 = \{1\}.$
- Given $\Pi_n \in \mathcal{P}_n$, letting K_n the number of blocks in Π_n , $(n+1)$ -th ball is assigned into the existing blocks $\{U_1, \ldots, U_{K_n}\}$ or an empty blocks according to

$$
U_i \text{ for } i \in \{1, ..., K_n\} \qquad \text{with probability } \frac{|U_i| - \alpha}{n + \theta}
$$
\n
$$
\text{Empty block} \qquad \text{with probability } \frac{\theta + \alpha K_n}{n + \theta}
$$
\n
$$
\text{with probability } \frac{\theta + \alpha K_n}{n + \theta}
$$
\n
$$
\text{with probability } \frac{\theta + \alpha K_n}{n + \theta}
$$

 $...$

new

Example: $n = 1$

Let us start with $\Pi_1 = (\{1\})$. Then

2nd ball belongs to $\begin{cases} \{1\} & \text{with prob. } (1-\alpha)/(1+\theta) \\ \text{new.} & \text{with prob. } (0+\alpha)/(1+\theta) \end{cases}$ new urn with prob. $(\theta + \alpha)/(1 + \theta)$.

Example: $n = 2$

Suppose 2 was assigned to ${1}$

Example $n = 3$

Suppose 3 was assigned to a new block

so that $\Pi_3 = \{\{1, 2\}, \{3\}\}\$. Then

4th ball belongs to
$$
\begin{cases} U_1 = \{1, 2\} & \text{with prob. } (2 - \alpha)/(3 + \theta) \\ U_2 = \{3\} & \text{with prob. } (1 - \alpha)/(3 + \theta) \\ \text{new urn} & \text{with prob. } (\theta + 2\alpha)/(3 + \theta) \end{cases}
$$

Asymptotics of Ewens–Pitman partition as $n \to \infty$ For the partition $\Pi_n = (U_1, U_2, \dots)$, we define

$$
S_{n,j} := \sum_{i\geq 1} \mathbf{1}\{|U_i| = j\}
$$
 "Number of urns of size j"

$$
K_n := \sum_{j\geq 1} S_{n,j}
$$
 "Number of non empty urns".

e.g.) $\Pi_4 = (\{1,4\}, \{2\}, \{3\}) \Rightarrow S_{4,1} = 2, S_{4,2} = 1, S_{4,i} = 0 \; (\forall j \geq 3).$

Theorem (Asymptotics when $0 < \alpha < 1, \theta > -\alpha$) [\[Pit06\]](#page-31-0)

 $\, {\bf D} \, \, n^{-\alpha} K_n \stackrel{\mathrm{a.s.}}{\longrightarrow} M_{\alpha\theta},$ where $M_{\alpha\theta}$ is a non degenerate random variable. **2** $\forall j \in \mathbb{N}, S_{n,j}/K_n \stackrel{\text{a.s.}}{\longrightarrow} p_{\alpha}(j) := \frac{\alpha \prod_{i=1}^{j-1} (i-\alpha)}{j!} = O(j^{-(\alpha+1)}).$

Application

Estimation of α is of particular interest.

1 [\[BFN22,](#page-30-0) [FN21,](#page-30-1) [FLMP09,](#page-30-2) [Sib14\]](#page-32-0), [\[FPR21,](#page-31-1) [Hos01\]](#page-31-2), [\[CCV22\]](#page-30-3) ²[\[CD18,](#page-30-4) [NRC21\]](#page-31-3)

Connection to Nonparametric Bayesian Inference

• For (α, θ) and a non atomic measure F, Poisson Dirichlet prior $P = \text{PD}(\alpha, \theta, F)$ is a discrete random measure defined by

$$
\mathsf{PD}(\alpha,\theta,F) := \sum_{i=1}^{\infty} p_i \delta_{y_i}, \text{where}
$$

$$
y_i \stackrel{\text{iid}}{\sim} F \text{ and } p_i = v_i \prod_{j=1}^{i-1} (1 - v_j) \text{ with } v_i \sim \text{Beta}(1 - \alpha, \theta + j\alpha).
$$

• If $X_i | P \stackrel{\text{iid}}{\sim} P$, $(X_i)_{i=1}^n$ induces a partition Π_n by the equivalence relation $i \sim j$ iff $X_i = X_j$.

Theorem ([\[Pit06\]](#page-31-0))

 Π_n induced by conditional iid sample from $PD(\alpha,\theta,F)$ has the same law as Π_n generated by Ewens–Pitman partition (α, θ) .

• Estimation of (α, θ) is the hyper-parameter tuning of $PD(\alpha, \theta, F)$

Naive Estimation of α

• Recall there exists a positive random variable $M_{\alpha\theta}$ s.t.

$$
K_n/n^{\alpha} \xrightarrow{\text{a.s.}} M_{\alpha\theta}
$$

• Define $\hat{\alpha}_n^{\text{naive}} := \log K_n / \log n$. Then

 $\log n \cdot (\hat{\alpha}_n^{\text{naive}} - \alpha) = \log K_n - \alpha \log n = \log(K_n/n^{\alpha}) \stackrel{\text{a.s.}}{\longrightarrow} \log M_{\alpha\theta}$

• $\hat{\alpha}_n^{\text{naive}}$ is $\log n$ -consistent.

Maximum Likelihood Estimator of α

QQ plot of $\hat{\alpha}_n^{\textsf{MLE}}$ with $(\alpha, \theta) = (0.8, 0)$, $n = 2^{19}$, replicate $=$ 10^5

 \bullet $\hat{\alpha}_n^{\sf MLE}$ is not asymptotically normal.

Maximum Likelihood Estimator of θ

Histogram of $\hat{\theta}_n^{\textsf{MLE}}$ with $n=2^{16}$ and replicate $=1000.$

- $\hat{\theta}_n^{\textsf{MLE}}$ does not concentrate on θ .
- Limit distribution is not normal.

Contribution

We derive the exact asymptotic distribution of $(\hat{\alpha}^\mathsf{MLE}_n, \hat{\theta}^\mathsf{MLE}_n)$:

$$
\sqrt{n^{\alpha} I_{\alpha}} \cdot (\hat{\alpha}_n^{\mathsf{MLE}} - \alpha) \rightarrow \mathcal{N}(0, M_{\alpha\theta}^{\vphantom{\alpha\theta}-1}), \quad \hat{\theta}_n^{\mathsf{MLE}} \rightarrow \alpha \cdot f_{\alpha}^{-1}(\log M_{\alpha\theta}),
$$

from which we conclude

- $\hat{\alpha}_n^{\sf MLE}$ is $n^{\alpha/2}$ -consistent, faster than the rate $\log n$ of $\hat{\alpha}_n^{\sf naive}.$
- $\bullet \,\, \mathcal{N}(0,M_{\alpha\theta}^{-1})$ is a variance mixture of centered normals due to the randomness of $M_{\alpha\theta}$
- $\hat{\theta}_n^{\textsf{MLE}}$ is not consistent.

We also propose a confidence interval for α .

Table of content

1 [Introduction](#page-1-0)

2 [Main result](#page-15-0)

³ [Summary and Future Research](#page-25-0)

4 [Appendix](#page-33-0)

Likelihood Formula

For the partition $\Pi_n = (U_1, U_2, \dots)$, we define

 $S_{n,j} := \sum \mathbf{1}\{|U_i| = j\}$ "Number of urns of size j " i≥1 $K_n:=\sum$ $j \geq 1$ "Number of non empty urns".

e.g.) $\Pi_4 = (\{1,4\}, \{2\}, \{3\}) \Rightarrow S_{4,1} = 2, S_{4,2} = 1, S_{4,i} = 0 \; (\forall j \geq 3).$

Theorem (Ewens–Pitman Sampling Formula) [\[Pit06\]](#page-31-0)

Likelihood $\mathcal{L}(\Pi_n; \alpha, \theta)$ of Ewens–Pitman partition (α, θ) can be written by

$$
\mathcal{L}(\Pi_n; \alpha, \theta) = \frac{\prod_{i=1}^{K_n - 1} (\theta + i\alpha)}{\prod_{i=1}^{n-1} (\theta + i)} \prod_{j=2}^n \left\{ \prod_{i=1}^{j-1} (-\alpha + i) \right\}^{S_{n,j}}
$$

Therefore, $(S_{n,j})_{j\geq 1}$ is sufficient statistic.

.

Asymptotic analysis of Fisher Information

Derive leading terms ($n \to \infty$) of Fisher Information defined as

$$
I_{\alpha\alpha}^{(n)} := \mathbb{E}[-\partial_{\alpha\alpha}^2 \log \mathcal{L}(\Pi_n; \alpha, \theta)],
$$

\n
$$
I_{\alpha\theta}^{(n)} := \mathbb{E}[-\partial_{\alpha\theta}^2 \log \mathcal{L}(\Pi_n; \alpha, \theta)],
$$

\n
$$
I_{\theta\theta}^{(n)} := \mathbb{E}[-\partial_{\theta\theta}^2 \log \mathcal{L}(\Pi_n; \alpha, \theta)].
$$

Useful notation:

• I_{α} := Fisher Information of the distribution with pmf $p_{\alpha}(j)$, i.e.,

$$
I_{\alpha} := -\sum_{j=1}^{\infty} p_{\alpha}(j) \cdot \partial_{\alpha}^{2} \log p_{\alpha}(j) \text{ with } p_{\alpha}(j) = \frac{\alpha \prod_{i=1}^{j-1} (i - \alpha)}{j!}
$$

• Function³ $f_{\alpha}: (-1, \infty) \rightarrow \mathbb{R}$ defined by (don't need to memorize)

$$
f_\alpha:z\mapsto \psi(1+z)-\alpha\psi(1+\alpha z) \text{ with }\psi(x)=\Gamma'(x)/\Gamma(x)
$$

 $^3f_\alpha$ is bijective, strictly increasing, and convex.

Asymptotic analysis of Fisher Information

Lemma (Leading terms of Fisher Information)

As $n \to \infty$, we have

$$
I_{\alpha\alpha}^{(n)} \sim n^{\alpha} I_{\alpha} \mathbb{E}[M_{\alpha\theta}], \ I_{\theta\alpha}^{(n)} \sim \alpha^{-1} \log n, \ I_{\theta\theta}^{(n)} \to \alpha^{-2} f_{\alpha}'(\theta/\alpha) < +\infty.
$$

- Non-identifiability of θ .
- \bullet The optimal convergence rate of estimators of α is $n^{-\alpha/2}$
- (α, θ) are asymptotically orthogonal.

Maximum Likelihood Estimator

Given a partition $\Pi_n=(U_1,U_2,\dots)$, define $(\hat{\alpha}_n^{\sf MLE},\hat{\theta}_n^{\sf MLE})$ by

$$
(\hat{\alpha}_n^{\sf MLE},\hat{\theta}_n^{\sf MLE})\in\mathop{\arg\max}_{\alpha\in[\epsilon,1-\epsilon],\theta>-\alpha}\frac{\prod_{i=1}^{K_n-1}(\theta+i\alpha)}{\prod_{i=1}^{n-1}(\theta+i)}\prod_{j=2}^n\left\{\prod_{i=1}^{j-1}(-\alpha+i)\right\}^{S_{n,j}}
$$

where
$$
S_{n,j} = \sum_{i \geq 1} \mathbf{1}\{|U_i| = j\}
$$
, and $K_n = \sum_{j \geq 1} S_{n,j}$.

Lemma (Existence and Uniqueness of MLE)

If $\alpha \in [\epsilon, 1-\epsilon]$, $(\hat{\alpha}_n^{MLE}, \hat{\theta}_n^{MLE})$ uniquely exists with high probability.

- Since $\{\alpha \in [\epsilon, 1-\epsilon], \theta > -\alpha\}$ is not compact, this is not obvious.
- We can relax ϵ to a slowly decreasing array.

Asymptotic distribution of the MLE

Theorem (when $0 < \alpha < 1, \theta > -\alpha$)

Let $M_{\alpha\theta} = \lim_{n\to\infty} K_n/n^{\alpha}$, which is a positive random variable. Then

$$
\sqrt{n^{\alpha}I_{\alpha}} \cdot (\hat{\alpha}_{n}^{\mathsf{MLE}} - \alpha) \stackrel{\text{stable}}{\longrightarrow} \mathcal{N}(0, M_{\alpha\theta}^{-1}),
$$

$$
\hat{\theta}_{n}^{\mathsf{MLE}} \stackrel{\text{p}}{\longrightarrow} \alpha \cdot f_{\alpha}^{-1}(\log M_{\alpha\theta}),
$$

where
$$
I_{\alpha} = -\sum_{j=1}^{\infty} p_{\alpha}(j) \cdot \partial_{\alpha}^{2} \log p_{\alpha}(j)
$$
 with $p_{\alpha}(j) = \frac{\alpha \prod_{i=1}^{j-1} (i-\alpha)}{j!}$ and $f_{\alpha}(z) := \psi(1+z) - \alpha \psi(1+\alpha z)$ ($\forall z > -1$)

 $\mathbf{D} \,\, \hat{\alpha}_n^{\sf MLE}$ is $n^{\alpha/2}$ -consistent, faster than the rate $\log n$ of $\hat{\alpha}_n^{\sf naive}.$ $\bm{2}$ $\mathcal{N}(0, M_{\alpha\theta}^{-1})$ is a variance mixture of centered normals. However we can construct a confidence interval for α $\mathbf{\Theta}$ $\hat{\theta}_n^{\sf MLE}$ is not consistent, and converges to a non-standard distribution. Asymptotic mixed normality of $\hat{\alpha}_n$ For $I^{(n)}_{\alpha\alpha}:=\mathbb{E}[-\partial^2_{\alpha\alpha}\log\mathcal{L}(\Pi_n;\alpha,\theta)]$ and $\hat{\alpha}_n^{\sf MLE}$, we have shown $I_{\alpha\alpha}^{(n)} \sim n^{\alpha} \mathbb{E}[M_{\alpha\theta}]I_{\alpha}, \quad \sqrt{n^{\alpha}I_{\alpha}} \cdot (\hat{\alpha}_n^{\mathsf{MLE}} - \alpha) \rightarrow \mathcal{N}(0, M_{\alpha\theta}^{-1}),$ which implies

$$
\sqrt{I_{\alpha\alpha}^{(n)}} \cdot (\hat{\alpha}_n^{\text{MLE}} - \alpha) \sim \sqrt{n^{\alpha} \mathbb{E}[M_{\alpha\theta}] I_{\alpha}} \cdot (\hat{\alpha}_n^{\text{MLE}} - \alpha)
$$

$$
= \sqrt{\mathbb{E}[M_{\alpha\theta}]} \times \sqrt{n^{\alpha} I_{\alpha}} \cdot (\hat{\alpha}_n^{\text{MLE}} - \alpha)
$$

$$
\rightarrow \sqrt{\mathbb{E}[M_{\alpha\theta}]} \times \mathcal{N}(0, M_{\alpha\theta}^{-1})
$$

$$
= \mathcal{N}(0, \mathbb{E}[M_{\alpha\theta}]/M_{\alpha\theta}),
$$

where the variance of the normal is random (asymptotic mixed normality).

$$
\mathcal{N}\left(0,\frac{\mathbb{E}[M]}{M}\right)\left(\mathcal{N}\left(0,1\right)\right)
$$

Confidence Interval for α

For the number of urns K_n and $\hat{\alpha}_n^{\sf MLE}$, it holds that

$$
K_n/n^{\alpha} \stackrel{\text{a.s.}}{\longrightarrow} M_{\alpha\theta}, \quad \sqrt{n^{\alpha}I_{\alpha}} \cdot (\hat{\alpha}_n^{\mathsf{MLE}} - \alpha) \stackrel{\text{stable}}{\longrightarrow} \mathcal{N}(0, M_{\alpha\theta}^{-1}),
$$

which implies

$$
\begin{aligned} \sqrt{K_n I_\alpha} \cdot (\hat{\alpha}_n^{\mathsf{MLE}} - \alpha) &= \sqrt{\frac{K_n}{n^\alpha}} \cdot \sqrt{n^\alpha I_\alpha} (\hat{\alpha}_n - \alpha) \\ &\to \sqrt{M_{\alpha\theta}} \cdot \mathcal{N}(0, M_{\alpha\theta}{}^{-1}) &= \mathcal{N}(0, 1), \end{aligned}
$$

where the random variable $M_{\alpha\theta}$ is cancelled out.⁴

• Normalizing by K_n , $\hat{\alpha}_n^{\sf MLE}$ converges to normal distribution $\bullet~~ [\hat{\alpha}^{\sf MLE}_n \pm 1.96/\sqrt{K_n I_{\hat{\alpha}_n}}]$ is 95% confidence interval for $\alpha.$

⁴We use an extended Slutzky's lemma for stable convergence.

Non-standard asymptotics of θ_n For $I^{(n)}_{\theta\theta}:=\mathbb{E}[-\partial^2_{\theta\theta}\log\mathcal{L}(\Pi_n;\alpha,\theta)]$ and $\hat{\theta}^{\sf MLE}_n$, we have shown $I_{\theta\theta}^{(n)} \to \alpha^{-2} f_\alpha'(\theta/\alpha),~~\hat{\theta}_n^{\sf MLE} \to \alpha \cdot f_\alpha^{-1}(\log M_{\alpha\theta})$ (in probability) Compare $f_\alpha^{-1}(\log M_{\alpha\theta})$ and $\mathcal{N}(\theta,(\lim_{n\to\infty}I_{\theta\theta}^{(n)})^{-1})=\mathcal{N}(\theta,\alpha^2/f_\alpha'(\theta/\alpha)).$

Sketch of proof

- Asymptotically orthogonality of $(\alpha, \theta) \Rightarrow$ Coordinate-wise analysis
- Applying Martingale (Stable) CLT for log-likelihood
- Define the random/deterministic measure \mathbb{P}_n/\mathbb{P} on $\mathbb N$ by

$$
\forall j \in \mathbb{N}, \ \mathbb{P}_n(j) := \frac{S_{n,j}}{K_n}, \ \mathbb{P}(j) := \frac{\alpha \prod_{i=1}^{j-1} (i - \alpha)}{j!},
$$

and, for suitable set of functions $\mathcal F$ on $\mathbb N$, show

$$
\sup_{f \in \mathcal{F}} |\mathbb{E}_n f - \mathbb{E} f| \to^P 0.
$$

Table of content

1 [Introduction](#page-1-0)

2 [Main result](#page-15-0)

³ [Summary and Future Research](#page-25-0)

4 [Appendix](#page-33-0)

Summary

We derive the exact asymptotic distribution of $(\hat{\alpha}^\mathsf{MLE}_n, \hat{\theta}^\mathsf{MLE}_n)$ as

$$
\sqrt{n^{\alpha} I_{\alpha}} \cdot (\hat{\alpha}_n^{\mathsf{MLE}} - \alpha) \rightarrow \mathcal{N}(0, M_{\alpha\theta}^{\vphantom{\alpha\theta}-1}), \quad \hat{\theta}_n^{\mathsf{MLE}} \rightarrow \alpha \cdot f_{\alpha}^{-1}(\log M_{\alpha\theta}),
$$

from which we conclude

- $\hat{\alpha}_n^{\sf MLE}$ is $n^{\alpha/2}$ -consistent, faster than the rate $\log n$ of $\hat{\alpha}_n^{\sf naive}$.
- \bullet $\hat{\alpha}_n^{\sf MLE}$ is asymptotically mixed normal due to the randomness of $M_{\alpha\theta}.$
- √ $\overline{K_n I_\alpha}\cdot(\hat{\alpha}_n^{\sf MLE} - \alpha) \to \mathcal{N}(0,1)$, which leads to confidence interval.
- \bullet $\hat{\theta}_n^{\sf MLE}$ is not consistent, and the limit distribution is positively skewed.

Future research 1: Hypothesis testing of $\alpha = 0$ or not

• We showed

$$
\forall \alpha \in (0,1), \ \sqrt{K_n I_\alpha} \cdot (\hat{\alpha}_n^{\sf MLE} - \alpha) \to \mathcal{N}(0,1)
$$

We can test H_0 : $\alpha < \alpha_0$ vs H_1 : $\alpha_0 < \alpha < 1$ for $\alpha_0 \in (0,1)$.

• There is a transition at $\alpha = 0$.

• How to test $H_0: \alpha = 0$ vs $H_1: 0 < \alpha < 1$?

Testing of H_0 : $\alpha = 0$ vs H_1 : $0 < \alpha < 1$

We can think of

$$
H_0: \alpha = 0, H_1: \alpha = 1/\log \log n
$$

and find some criteria R_n and law F such that $R_n \to F$ under H_1 .

Future research 2: Prediction of unseen

• For $m\in\mathbb{N}$, predict the law $\mathbb{P}^{n,m}_{\alpha,\theta}$ of $K_{n+m}-K_n$ given a partition Π_n of $[n]$. For example, if $m = 1$,

$$
\mathbb{P}_{\alpha,\theta}^{n,1}(1) = \Pr(K_{n+1} - K_n = 1 | \Pi_n) = \frac{\theta + \alpha K_n}{n + \theta}
$$

• Plug-in/Bayesian predictive distribution $\mathbb{P}^{n,m}_{\rm MLE}/\mathbb{P}^{n,m}_{\pi}$ is

$$
\mathbb{P}^{n,m}_{\mathsf{MLE}}(\cdot) := \mathbb{P}^{n,m}_{\hat{\alpha}^{\mathsf{MLE}}_n, \hat{\theta}^{\mathsf{MLE}}_n}(\cdot), \quad \mathbb{P}^{n,m}_{\pi}(\cdot) := \int_{\alpha, \theta} \mathbb{P}^{n,m}_{\alpha, \theta}(\cdot) d\pi(\alpha, \theta | \Pi_n).
$$

 \bullet Compare Plug-in/Bayesian risk $R^{n,m}_{\rm MLE}/R^{n,m}_{\pi}$, defined by

$$
R_{\mathsf{MLE}}^{n,m} := \mathbb{E}^n_{\alpha,\theta}\left[\mathsf{KL}\left(\mathbb{P}_{\alpha,\theta}^{n,m} \mid\mid \mathbb{P}_{\mathsf{MLE}}^{n,m}\right)\right], R_{\pi}^{n,m} := \mathbb{E}^n_{\alpha,\theta}\left[\mathsf{KL}\left(\mathbb{P}_{\alpha,\theta}^{n,m} \mid\mid \mathbb{P}_{\pi}^{n,m}\right)\right]
$$

Existing works ([\[FN21,](#page-30-1) [FLMP09\]](#page-30-2)) use $\mathbb{P}^{n,m}_{\mathrm{MLE}}$, but we expect $R_{\sf MLE}^{n,m}\gtrsim R_{\pi}^{n,m}$ in a regime like $m\gtrsim n.$

• Require BvM, asymptotic expansion of KL, Ibragimov–Has'minski Theory [\[IHM13\]](#page-31-4), etc.

Reference I

- [BFN22] Cecilia Balocchi, Stefano Favaro, and Zacharie Naulet. Bayesian nonparametric inference for" species-sampling" problems. arXiv preprint arXiv:2203.06076, 2022.
- [CCV22] Giulia Cereda, Fabio Corradi, and Cecilia Viscardi. Learning the two parameters of the poisson–dirichlet distribution with a forensic application.

Scandinavian Journal of Statistics, pages 1–22, 2022.

[CD18] Harry Crane and Walter Dempsey. Edge Exchangeable Models for Interaction Networks. Journal of the American Statistical Association, 113(523): 1311–1326, 2018.

[FLMP09] Stefano Favaro, Antonio Lijoj, Ramsés H Mena, and Igor Prünster. Bayesian non-parametric inference for species variety with a two-parameter poisson–dirichlet process prior.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(5): 993–1008, 2009.

[FN21] Stefano Favaro and Zacharie Naulet. Near-optimal estimation of the unseen under regularly varying tail populations. arXiv preprint arXiv:2104.03251, 2021.

Reference II

- [FPR21] Stefano Favaro, Francesca Panero, and Tommaso Rigon. Bayesian nonparametric disclosure risk assessment. Electronic Journal of Statistics, 15(2): 5626–5651, 2021.
- [HL15] Erich Häusler and Harald Luschgy. Stable Convergence and Stable Limit Theorems. Springer, 2015.
- [Hos01] Nobuaki Hoshino. Applying Pitman's sampling formula to microdata disclosure risk assessment. Journal of Official Statistics, 17(4): 499–520, 2001.
- [IHM13] Ildar Abdulovich Ibragimov and Rafail Zalmanovich Has' Minskii. Statistical estimation: asymptotic theory, volume 16. Springer Science & Business Media, 2013.
- [NRC21] Zacharie Naulet, Judith Rousseau, and François Caron. Asymptotic analysis of statistical estimators related to multigraphex processes under misspecification.

arXiv preprint arXiv:2107.01120, 2021.

[Pit06] Jim Pitman.

Combinatorial Stochastic Processes: Ecole d'eté de probabilités de saint-flour xxxii-2002. Springer, 2006.

Reference III

[Sib14] Masaaki Sibuya.

Prediction in Ewens–Pitman sampling formula and random samples from number partitions.

Annals of the Institute of Statistical Mathematics, 66(5): 833–864, 2014.

Table of content

1 [Introduction](#page-1-0)

2 [Main result](#page-15-0)

³ [Summary and Future Research](#page-25-0)

4 [Appendix](#page-33-0)

α -diversity and power-law of EP partition

For $\alpha \in (0,1)$, define the probability mass function $p_{\alpha}(j)$ on N by

$$
\forall j \in \mathbb{N}, \ \ p_{\alpha}(j) = \frac{\alpha \prod_{i=1}^{j-1} (i - \alpha)}{j!}.
$$

Stirling formula implies, as $j \to \infty$,

$$
p_{\alpha}(j) = \frac{\alpha}{\Gamma(1-\alpha)} \cdot \frac{\Gamma(j-\alpha)}{\Gamma(j+1)} \sim \frac{\alpha}{\Gamma(1-\alpha)} j^{-(1+\alpha)} = O(j^{-(1+\alpha)}).
$$

We call it Sibuya distribution of parameter α , denoted by $\text{Sib}(\alpha)$.

α -diversity and power-law of EP partition

• For each $\alpha \in (0,1)$, let S_{α} be the positive random variable characterized by

$$
\lambda \ge 0, \ E[S_{\alpha}^{\lambda}] = e^{-\lambda^{\alpha}}.
$$

• Mittag-Leffler distribution (α) is the law of M_{α} defined as

$$
M_{\alpha} := (S_{\alpha})^{-\alpha}
$$

• For each $\theta > -\alpha$, Generalized Mittag-Leffler distribution (α, θ) , denoted by $GMLf(\alpha, \theta)$, is the distribution with its p.d.f. $q_{\alpha\theta}$ characterized by

$$
\forall x > 0, \ g_{\alpha\theta}(x) \propto x^{\theta/\alpha} g_{\alpha}(x),
$$

where $g_{\alpha}(x)$ is the p.d.f. of Mittag-Leffler distribution (α) .

When $\alpha = 0, \theta > 0$

Suppose we partitioned *n* balls into $\{U_1, U_2, \ldots, U_{K_n}\}\$. Then $(n+1)$ -th ball will be assigned to

- urn U_i with prob. $|U_i|/(n+\theta)$.
- a new urn with prob. $\theta/(n+\theta)$.

Suppose n balls are partitioned. Then, likelihood is expressed by

$$
\frac{\theta^{K_n-1}}{\prod_{i=1}^{n-1}(\theta+i)} \prod_{j=2}^n {\{\Gamma(j)\}}^{S_{n,j}},
$$

which implies K_n is sufficient for θ .

When $\alpha = 0, \theta > 0$

 K_n can be represented as the sum of independent Bernoulli as

$$
K_n = \sum_{m=1}^{n} X_m, \ X_m \sim \text{Bernoulli}\left(\frac{\theta}{m-1+\theta}\right)
$$

We can easily show that

$$
\frac{K_n}{\log n} \to \theta \text{ (a.s.)}
$$

$$
\frac{K_n - \theta \log n}{\sqrt{\theta \log n}} \to \mathcal{N}(0, 1) \text{ (weakly)}
$$

For $\tilde{\theta}_n := K_n / \log n$, we get

$$
\sqrt{\frac{\log n}{\theta}}(\tilde{\theta}_n-\theta)\to \mathcal{N}(0,1) \text{ (weakly)}
$$

The above asymptotics also holds for MLE $\hat{\theta}_n$.

.

Stable convergence

 (Ω, \mathcal{F}, P) : A probability space $C_b(\mathcal{X})$: The set of continuous, bounded functions on X.

Definition (Stable convergence)

For a sub σ -field $\mathcal{G} \subset \mathcal{F}$, a sequence of $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$ -valued random variables $(X_n)_{n\geq 1}$ is said to converge G-stably to X if

 $\forall f \in \mathcal{L}^1, \forall h \in C_b(\mathcal{X}), \quad \lim_{n \to \infty} \mathbb{E}[f \mathbb{E}[h(X_n)|\mathcal{G}]] = \mathbb{E}[f \mathbb{E}[h(X)|\mathcal{G}]].$

If X is independent of G, X_n is said to converge G-mixing to X.

•
$$
X_n \to X
$$
 G-mixing $\Rightarrow X_n \to X$ G-stably $\Rightarrow X_n \stackrel{d}{\to} X$.

• When $\mathcal{G} = \{\emptyset, \Omega\}$, these convergences are equivalent.

Generalization of Slutzky's lemma to Stable convergence

Lemma ([\[HL15\]](#page-31-5))

For $(\mathcal{X}, \mathcal{B}(\mathcal{X})),(\mathcal{Y}, \mathcal{B}(\mathcal{Y}))$, a pair of some separable metrizable spaces, let $(X_n)_{n\geq 1}$ be a sequence of $(X,\mathcal{B}(\mathcal{X}))$ -valued random variables and $(Y_n)_{n\geq 1}$ be a sequence of $(Y, \mathcal{B}(Y))$ -valued random variables. Assume that there exists a certain random variable X such that $X_n \to X$ G-stably. Then, the following statements hold.

• Let
$$
X = Y
$$
. If $d(X_n, Y_n) \stackrel{p}{\rightarrow} 0$, $Y_n \rightarrow X$ G-stably.

- **2** If $Y_n \stackrel{\text{p}}{\rightarrow} Y$ and Y is $\mathcal G$ -measurable, $(X_n,Y_n) \rightarrow (X,Y)$ $\mathcal G$ -stably.
- $\mathbf{3}$ If $g:\mathcal{X}\rightarrow\mathcal{Y}$ is $(\mathcal{B}(\mathcal{X}),\mathcal{B}(\mathcal{Y}))$ -measurable and continuous P^X -almost surely, then $q(X_n) \to q(X)$ G-stably.

Stable Martingale Central Limit Theorem

Lemma ([\[HL15\]](#page-31-5))

Let $(X_k)_{k\geq 1}$ be a martingale difference sequence with respect to $\mathscr F$ and let $(a_n)_{n\geq 1}$ be a sequence of positive real number with $a_n \to \infty$. Assume $(X_k)_{k\geq 1}$ satisfies the following two conditions.

$$
\mathbf{O} \; \frac{1}{a_n^2} \sum_{k=1}^n \mathbb{E}[X_k^2 | \mathcal{F}_{k-1}] \xrightarrow{\mathbf{P}} \eta^2 \text{ for some random variable } \eta \ge 0.
$$

2
$$
\frac{1}{a_n^2} \sum_{k=1}^n \mathbb{E}[X_k^2 \mathbb{1}\{|X_k| \geq \epsilon a_n\} | \mathcal{F}_{k-1}] \stackrel{P}{\to} 0
$$
 for all $\epsilon > 0$.
Then,

$$
\frac{1}{a_n}\sum_{k=1}^n X_k \to \eta N \ \mathcal{F}_{\infty}\text{-stably},
$$

where $N \sim \mathcal{N}(0, 1)$ and N is independent of \mathcal{F}_{∞} .