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Partition of integers
{U1,Us,..., U} is said to be a partition of [n] = {1,...n} into k blocks if
Ui #0, U;nUj=0, U U, =][n]
Letting P, 1 be the set of partitions of [n] into k, define P, as
Prn = U1 Pni-

Example

Pi={{}}.  P={{02) {2}
Py = {{{1.2.3}},
{2h ) ({231 1), {{L3) {2},
{121 81}
We denote the element of P, by II,,.

3/30



Sequential partitions of integers

Starting from II; = {{1}}, we consider a sequence of partitions.

My = {{1,2}} — I3 = {{1,2}, {3}} — Iy = {{1,2,4}, {3} —

® @
9

0 OYANE)

Ewens—Pitman partition is a stochastic process over the sets of partitions

(Pn)nZs-
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Ewens—Pitman partition («, 6)

Ewens—Pitman partition is a stochastic process over (P,)52 ;.
° H1 = {1}
e Given II,, € P, letting K,, the number of blocks in II,,, (n + 1)-th

ball is assigned into the existing blocks {Uy,..., Uk, } or an empty
blocks according to

Ui forie{1,...,K,} with probability |Ui|+_0a
K,
Empty block with probability ng

|U1|_O‘ |U2 704 ‘UK |7a 0+ oK,
n+6 7L+0 n+6 n+6

(o)
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Example: n =1
Let us start with IT; = ({1}). Then

2nd ball belongs to{ {1} with prob. (1 —a)/(1+0)

new urn with prob. (0 + «)/(1+ 6).

@ @ -

|[]” - |LQ|'_ « ‘[[K"|‘, « 0+ oK,
n+6 n+60 n+6 n+0

U1 U2 U K

n

6/30



Example: n = 2
Suppose 2 was assigned to {1}

so that ITo = {{1,2}}. Then

{1,2}  with prob. (2 —«)/(2+0)
3rd ball belongs to { new urn with prob. (0 4+ «)/(2 + 0)

@ @ -

U1 — o Y U] — | [|UK,| —a || 0+ Kn
n+6 n+6 n+6 n+6

Ur U2 U K,
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Example n = 3
Suppose 3 was assigned to a new block

®
%

NS

so that II3 = {{1,2},{3}}. Then

{ Uy ={1,2} with prob. (2—«)/(3+6)
4th ball belongs to Uy = {3} with prob. (1 —«)/(3+6)
new urn with prob. (6 + 2a)/(3+0)

@e-

|U1] — o YU — | | Uk, | — a k| 0+ aFn
n+6 n+0 n+6 n+60
new
@ @ 5(:) 8/30




Asymptotics of Ewens—Pitman partition as n — oo
For the partition II,, = (U1, Uy, ..., ), we define
Snj = Z 1{|Ui| = j}  “Number of urns of size j"
i>1
K, = ZS”J “Number of non empty urns”.
j>1
e.g.) I, = ({1,4}, {2}, {3}) = 5471 =2, 54’2 =1, 547]' =0 (Vj > 3).

Theorem (Asymptotics when 0 < a < 1,0 > —a) [Pit06]

® n K, > M.y, where M,y is a non degenerate random variable.

on e
® V) €N, Suji/Kn 2% pa(j) = 2=t — o(j=(@+h)),




Application

Estimation of « is of particular interest.

| Kn | Sn.j
Ecology® Species | Species j times observed
Network Analysis®> | Vertices | Vertices with j edges

-0 (j*((“rl))

7 (degree)

[BFN22, FN21, FLMP09, Sib14], [FPR21, Hos01], [CCV22]

2[CD18, NRC21]
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Connection to Nonparametric Bayesian Inference

e For (c,#) and a non atomic measure F', Poisson Dirichlet prior
P =PD(a, 0, F) is a discrete random measure defined by

PD(«, 0, F) szdyl,where

i=1
B i1
yilflgF and p; = v; H(l — vj) with v; ~ Beta(l — «,0 + ja).
j=1

o If X; |P“dP (X;)—, induces a partition II,, by the equivalence

relation 7 ~ j iff X; = X.

Theorem ([Pit06])

I1,, induced by conditional iid sample from PD(«, 0, F) has the same law
as I1,, generated by Ewens—Pitman partition (c, 0).

e Estimation of («, ) is the hyper-parameter tuning of PD(«, 6, F)
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Naive Estimation of «

e Recall there exists a positive random variable M,y s.t.

Kn/n® 2% Mo

A naive

e Define 4?"V¢ := log K, /logn. Then

~ naive

logn - (&M — a) =log K,, — alogn = log(K,,/n®) 22 log Mue

e 43"V is log n-consistent.
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Maximum Likelihood Estimator of «

10 1

0.8 4
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0.4

0.2+

0.0

0o 02 04 0.6 08 10

QQ plot of &MLE with (a, 0) = (0.8,0), n = 2%, replicate =10°

o GMLE is not asymptotically normal.

13/30



Maximum Likelihood Estimator of 6

a=0.4, 6=0.0 a=0.4, 6=5.0 a=0.4, 6=10.0
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Histogram of GMLE with n = 216 and replicate = 1000.

o OMLE does not concentrate on 6.

e Limit distribution is not normal.
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Contribution

We derive the exact asymptotic distribution of (&M-E, gMLE):

v/ nel, - (dMLE —a) = N(0, Ma(fl), éL\L/”‘E — - f;l(log M,p),

from which we conclude
o GMLE is n®/2-consistent, faster than the rate logn of anaive,
e N(0, Mop1) is a variance mixture of centered normals due to the
randomness of M,y

o OMLE is not consistent.

We also propose a confidence interval for a.
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Likelihood Formula
For the partition II,, = (U1, U, ..., ), we define

Snj = Z 1{|Ui| =j}  “Number of urns of size j"

i>1

K, = ZS”J “Number of non empty urns”.
j>1

€ g') Iy = ({1a4}7 {2}a {3}) = 54,1 =2, 54,2 =1, 54,]' =0 (VJ > 3)-

Theorem (Ewens—Pitman Sampling Formula) [Pit06]

Likelihood L(I1,,; c, ) of Ewens—Pitman partition (a, ) can be written by

K, —1 n — n,J
0+ i)
E(Hn;a,G):HH 6o g ||{H a—|—z} .

j=2

Therefore, (S, ;) >1 is sufficient statistic.
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Asymptotic analysis of Fisher Information
Derive leading terms (n — oo) of Fisher Information defined as

Ié’;) = E[—@ia log L(I1,; v, 0)],
1% .= B[~ 02y log L(IT,; o, )],
1) = B[-02 log L(IL,; o, 0)].

Useful notation:

e [, := Fisher Information of the distribution with pmf p,(j), i.e.,

al[Zi (i —a)
Zpa -9 log pa(j) with pa(j) = - g

e Function® f, : (—1,00) — R defined by (don't need to memorize)

fa:z= (14 2) —ap(l + az) with ¢(z) = T'(z)/T'(2)

3 f., is bijective, strictly increasing, and convex.
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Asymptotic analysis of Fisher Information

Lemma (Leading terms of Fisher Information)

As n — 0o, we have

IC(J,;) ~ n%I, E[Mye], IQ(Z) ~ o togn, 19(3) — a2 (0/a) < +oo.

¢ Non-identifiability of 6.

e The optimal convergence rate of estimators of « is n~=%/2
e (a, ) are asymptotically orthogonal.

0 =
O, (n log n)
3 il —
) )
Q Qn,g* !
£ I
g | /o
= | Op(n af )
g ; ’ ‘
2 S Burge | oo N
o0 o2 ,/z/ : 0 Q0 :
Ot o e > (Y
Qv o s o Qtrue
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Maximum Likelihood Estimator

Given a partition II,, = (Uy, Us, ...), define (aMLE GMLE) by

n (-1 Sn.j
(GMLE GMLEY ¢ argmax H’ 1 (6 +ia) H {H(—a—i—i)}

acle,1—¢€],0>—a Hi:l (9+1) j=2 \i=1

where Sn’] = 2221 1{|Ul| = ]}v and Kn = Z]Zl S

Lemma (Existence and Uniqueness of MLE)

Ifa € [e,1— €|, (GME GMLE) uniquely exists with high probability.

e Since {a € [¢,1 — €],0 > —a} is not compact, this is not obvious.
e We can relax € to a slowly decreasing array.
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Asymptotic distribution of the MLE

Theorem (when 0 < v < 1,6 > —a)

Let M,y = lim,,—,o K, /n®, which is a positive random variable. Then

VoI, - (GME — o) S22 A0, Moo ™Y,

OMLE Py o fo 1 (log M),

Il i—a
where Io = — "% pa(j) - 02 10g pa(j) with pa(j) = “H=0= and
fa(z) =9v(1+2) — ayp(1 + az) (Vz > —1)

©® &MLE is n®/2_consistent, faster than the rate log n of @n2ive,

® N(0, Mop~1) is a variance mixture of centered normals.
However we can construct a confidence interval for «

(3] é,’;"LE is not consistent, and converges to a non-standard distribution.
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Asymptotic mixed normality of &,
For I = E[-82, log £(IL,; a, 0)] and GMLE, we have shown

10 ~ n®E[Mag)L, /nIy - (6MF — a) = N(0, Map™),

which implies

I8 - (6ME —a) ~ naE[M o) o -(AMLE—a)
— VBl x Vol - (@1 - a)
— VE| ag]xN(o,Magfl)
= N (0, E[Map]/ Mas),

where the variance of the normal is random (asymptotic mixed normality).

N(0,1)
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Confidence Interval for «

For the number of urns K,, and o?D{'LE, it holds that

K /n® 2% Mag, /nol, - (GMYE — o) 22 Ar(0, Mo Y),

which implies

=

Kply - (GME _ ) = n—s -/ n, (G, — )
— v/ Mug - N (0, Mag_l) =N(0,1),

where the random variable M, is cancelled out.*

e Normalizing by K,,, @M converges to normal distribution

o [aME +£1.96/\/K,1a,] is 95% confidence interval for a.

*We use an extended Slutzky's lemma for stable convergence.
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Non-standard asymptotics of 6,
For Iég) := E[—832, log L(I1,;; a, 0)] and OM-E, we have shown

1(53) —a 2f1(0/a), OME 5 o 7 (log Mag) (in probability)

Compare [} (log Mag) and A(6, (limy, e I5)) 1) = N8, 02/ £4(8/)).

10

a=0.6, 6=0.0

a=0.6, 6=5.0

0 1 2 k] 4
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5
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H]
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| —— sample mean

: — normal pdf

00 25 50 75 100 125 150 175
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Sketch of proof

e Asymptotically orthogonality of (a, 8) = Coordinate-wise analysis
e Applying Martingale (Stable) CLT for log-likelihood

e Define the random /deterministic measure P, /P on N by

. . Sn . (6% 71—«
Vi eN, Pu(j) := Kiy]’ P(j) := H]',

and, for suitable set of functions F on N, show

sup [E.f —Ef| =7 0.
feF
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Summary

We derive the exact asymptotic distribution of (GMLE GMLE)

V naIa : (aql\m/ILE - a) - N(Oa Maﬁ_l)a él\:lLE — Q- fa_l(log MocQ)a

from which we conclude

o GMLE is n%/2_consistent, faster than the rate logn of G

o GMLE is asymptotically mixed normal due to the randomness of M.

o VK, I, - (&ME — o) — N(0,1), which leads to confidence interval.
GMLE
n

as

nalve

is not consistent, and the limit distribution is positively skewed.
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Future research 1: Hypothesis testing of a = 0 or not

e We showed

Vo€ (0,1), V/Knl, - (6GME —a) = N(0,1)

We can test Hy : a« < g vs Hy : g < ae < 1 for a9 € (0, 1).

e There is a transition at o« = 0.

‘ a=0 O0<ax<l
K, Op(logn) Op(n®)
MLE 6, Consistent Inconsistent
Nonparametric Bayes | Dirichlet prior | Poisson Dirichlet prior
Network data Dense Sparse

e Howtotest Hy:a=0vs Hi : 0 < aa < 17
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Testingof Hy:aa=0vs H1: 0 <a<1

‘ a=0 ‘azl/loglogn‘ l<ax<l
log ; 2
K, 0,(logn) 0, (1) 0,(n%)
Limit of S,,; | =% Poisson (6/7) ? ~ K.pa(j)
OMLE Consistent ? Inconsistent
aMLE ? n®/?-consistent

We can think of

Hy:a=0, H : a=1/loglogn

and find some criteria R,, and law F' such that R,, — F under Hj.
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Future research 2: Prediction of unseen
e For m € N, predict the law IP’Z:;” of K,im — K, given a partition II,,
of [n]. For example, if m =1,
0+ aK
PZ:é(l) = Pr(Kn-H - Kp= 1‘Hn) = T@n
e Plug-in/Bayesian predictive distribution Pyt /P is

IPﬂl\l/iEE() = PE’JSE éMLE(')? P?m(') = / QPZzZI(')dW(O‘amHn)-
n vn o

)

o Compare Plug-in/Bayesian risk Ryt /Ry, defined by
Rt = Bl g [KL (P 1| Pk ) | R = B [KL (R | )|

Existing works ([FN21, FLMP09]) use Py;'c, but we expect
Ryl Z Rx™ in a regime like m 2 n.

e Require BvM, asymptotic expansion of KL, Ibragimov—Has'minski
Theory [IHM13], etc.
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a-diversity and power-law of EP partition

For a € (0, 1), define the probability mass function p,(j) on N by

e
a g:l (i —a)

Stirling formula implies, as j — oo,
. o} I'j — o« o} —(1ta (lto
Pal(j) = QST G = o=,

I(1-a) T(j+1) TI(1-a)

We call it Sibuya distribution of parameter «, denoted by Sib(«).
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a-diversity and power-law of EP partition

e For each a € (0,1), let S, be the positive random variable
characterized by

A>0, E[S)] =e".
o Mittag-Leffler distribution () is the law of M, defined as
My = (Sa)™ @

e For each § > —«, Generalized Mittag-Leffler distribution (a, 6),
denoted by GMtLf(«, 0), is the distribution with its p.d.f. gag
characterized by

Va > 0, gao(x) o 2% ga (),

where g, () is the p.d.f. of Mittag-Leffler distribution («).

36/30



When aa = 0,60 > 0

Suppose we partitioned n balls into {Uy,Us,...,Uk,}. Then (n+ 1)-th
ball will be assigned to

e urn U; with prob. |U;|/(n + 0).
* a new urn with prob. 6/(n+ 0).
Suppose n balls are partitioned. Then, likelihood is expressed by

QK —1

H (6 + 1) H{

which implies K, is sufficient for 6.
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When aa = 0,60 > 0

K, can be represented as the sum of independent Bernoulli as

K’n, - Z me Xm ~ Bernoulli <91—|_9> .
m —

m=1
We can easily show that
Ky
logn
K, —0logn
Vllogn

For 6,, := n/logn, we get

— 0 (as.)

— N(0,1) (weakly)

102 2 (6, — 0) = N(0,1) (weakly)

The above asymptotics also holds for MLE O.,.
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Stable convergence

(Q, F, P): A probability space
Cy(X): The set of continuous, bounded functions on X'.

Definition (Stable convergence)

For a sub o-field G C F, a sequence of (X, B(X))-valued random
variables (X,,),>1 is said to converge G-stably to X if

Vf € £1,Yh e Cy(X), lim E[fE[h(X,)|G]) = E[f E[(X)|G]

If X is independent of G, X, is said to converge G-mixing to X.

e X, > X G-mixing = X,, - X G-stably = XngX.

e When G = {@, 2}, these convergences are equivalent.
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Generalization of Slutzky's lemma to Stable convergence

Lemma ([HL15])

For (X,B(X)),(Y,B(Y)), a pair of some separable metrizable spaces, let
(Xn)n>1 be a sequence of (X, B(X))-valued random variables and
(Yy)n>1 be a sequence of (), B()))-valued random variables. Assume
that there exists a certain random variable X such that X,, — X G-stably.
Then, the following statements hold.

® Let X =Y. Ifd(X,,Y;) 20, Y, = X G-stably.
® IfY,, DY and Y is G-measurable, (X,,Y;) — (X,Y) G-stably.

® Ifg: X — Y is (B(X),B(Y))-measurable and continuous PX -almost
surely, then g(X,) — g(X) G-stably.
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Stable Martingale Central Limit Theorem

Lemma ([HL15])

Let (X)r>1 be a martingale difference sequence with respect to % and
let (an)n>1 be a sequence of positive real number with a, — co. Assume
(Xk)r>1 satisfies the following two conditions.

(1 é St E[X?|Fi1] 2> n? for some random variable n > 0.

® b 2 EXP1{|Xk| = ean}| Fi] 2.0 for all € > 0.
Then,

1 n
— E X — nN Foo-stably,
Gn,

k=1

where N ~ N(0,1) and N is independent of F.
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