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Partition of integers
{U1, U2, . . . , Uk} is said to be a partition of [n] = {1, . . . n} into k blocks if

Ui ̸= ∅, Ui ∩ Uj = ∅, ∪k
i=1Uk = [n].

Letting Pn,k be the set of partitions of [n] into k, define Pn as

Pn = ∪n
k=1Pn,k.

Example

P1 =
{{

{1}
}}
, P2 =

{{
{1, 2}

}
,
{
{1}, {2}

}}
,

P3 =
{{

{1, 2, 3}
}
,{

{1, 2}, {3}
}
,
{
{2, 3}, {1}

}
,
{
{1, 3}, {2}

}
,{

{1}, {2}, {3}
}}
.

We denote the element of Pn by Πn.
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Sequential partitions of integers

Starting from Π1 = {{1}}, we consider a sequence of partitions.

Π2 =
{
{1, 2}

}
→ Π3 =

{
{1, 2}, {3}

}
→ Π4 =

{
{1, 2, 4}, {3}

}
→

Ewens–Pitman partition is a stochastic process over the sets of partitions
(Pn)

∞
n=1.
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Ewens–Pitman partition (α, θ)
Ewens–Pitman partition is a stochastic process over (Pn)

∞
n=1.

• Π1 = {1}.
• Given Πn ∈ Pn, letting Kn the number of blocks in Πn, (n+ 1)-th
ball is assigned into the existing blocks {U1, . . . , UKn} or an empty
blocks according to

Ui for i ∈ {1, . . . ,Kn} with probability
|Ui| − α

n+ θ

Empty block with probability
θ + αKn

n+ θ
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Example: n = 1

Let us start with Π1 = ({1}). Then

2nd ball belongs to

{
{1} with prob. (1− α)/(1 + θ)
new urn with prob. (θ + α)/(1 + θ).
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Example: n = 2
Suppose 2 was assigned to {1}

so that Π2 = {{1, 2}}. Then

3rd ball belongs to

{
{1, 2} with prob. (2− α)/(2 + θ)
new urn with prob. (θ + α)/(2 + θ)
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Example n = 3
Suppose 3 was assigned to a new block

so that Π3 = {{1, 2}, {3}}. Then

4th ball belongs to


U1 = {1, 2} with prob. (2− α)/(3 + θ)
U2 = {3} with prob. (1− α)/(3 + θ)
new urn with prob. (θ + 2α)/(3 + θ)
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Asymptotics of Ewens–Pitman partition as n → ∞
For the partition Πn = (U1, U2, . . . , ), we define

Sn,j :=
∑
i≥1

1{|Ui| = j} “Number of urns of size j”

Kn :=
∑
j≥1

Sn,j “Number of non empty urns”.

e.g.) Π4 = ({1, 4}, {2}, {3}) ⇒ S4,1 = 2, S4,2 = 1, S4,j = 0 (∀j ≥ 3).

Theorem (Asymptotics when 0 < α < 1, θ > −α) [Pit06]

1 n−αKn
a.s.−→Mαθ, where Mαθ is a non degenerate random variable.

2 ∀j ∈ N, Sn,j/Kn
a.s.−→ pα(j) :=

α
∏j−1

i=1 (i−α)
j! = O(j−(α+1)).
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Application

Estimation of α is of particular interest.

Kn Sn,j

Ecology1 Species Species j times observed

Network Analysis2 Vertices Vertices with j edges

1[BFN22, FN21, FLMP09, Sib14], [FPR21, Hos01], [CCV22]
2[CD18, NRC21]
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Connection to Nonparametric Bayesian Inference
• For (α, θ) and a non atomic measure F , Poisson Dirichlet prior
P = PD(α, θ, F ) is a discrete random measure defined by

PD(α, θ, F ) :=
∞∑
i=1

piδyi ,where

yi
iid∼ F and pi = vi

i−1∏
j=1

(1− vj) with vi ∼ Beta(1− α, θ + jα).

• If Xi|P
iid∼ P , (Xi)

n
i=1 induces a partition Πn by the equivalence

relation i ∼ j iff Xi = Xj .

Theorem ([Pit06])

Πn induced by conditional iid sample from PD(α, θ, F ) has the same law
as Πn generated by Ewens–Pitman partition (α, θ).

• Estimation of (α, θ) is the hyper-parameter tuning of PD(α, θ, F )
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Naive Estimation of α

• Recall there exists a positive random variable Mαθ s.t.

Kn/n
α a.s.−→Mαθ

• Define α̂naive
n := logKn/log n. Then

log n · (α̂naive
n − α) = logKn − α log n = log(Kn/n

α)
a.s.−→ logMαθ

• α̂naive
n is log n-consistent.
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Maximum Likelihood Estimator of α

QQ plot of α̂MLE
n with (α, θ) = (0.8, 0), n = 219, replicate =105

• α̂MLE
n is not asymptotically normal.
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Maximum Likelihood Estimator of θ

Histogram of θ̂MLE
n with n = 216 and replicate = 1000.

• θ̂MLE
n does not concentrate on θ.

• Limit distribution is not normal.
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Contribution

We derive the exact asymptotic distribution of (α̂MLE
n , θ̂MLE

n ):√
nαIα · (α̂MLE

n − α) → N (0,Mαθ
−1), θ̂MLE

n → α · f−1
α (logMαθ),

from which we conclude

• α̂MLE
n is nα/2-consistent, faster than the rate log n of α̂naive

n .

• N (0,Mαθ
−1) is a variance mixture of centered normals due to the

randomness of Mαθ

• θ̂MLE
n is not consistent.

We also propose a confidence interval for α.
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Likelihood Formula
For the partition Πn = (U1, U2, . . . , ), we define

Sn,j :=
∑
i≥1

1{|Ui| = j} “Number of urns of size j”

Kn :=
∑
j≥1

Sn,j “Number of non empty urns”.

e.g.) Π4 = ({1, 4}, {2}, {3}) ⇒ S4,1 = 2, S4,2 = 1, S4,j = 0 (∀j ≥ 3).

Theorem (Ewens–Pitman Sampling Formula) [Pit06]

Likelihood L(Πn;α, θ) of Ewens–Pitman partition (α, θ) can be written by

L(Πn;α, θ) =

∏Kn−1
i=1 (θ + iα)∏n−1
i=1 (θ + i)

n∏
j=2

{
j−1∏
i=1

(−α+ i)

}Sn,j

.

Therefore, (Sn,j)j≥1 is sufficient statistic.

17 / 30



Asymptotic analysis of Fisher Information
Derive leading terms (n→ ∞) of Fisher Information defined as

I(n)αα := E[−∂2αα logL(Πn;α, θ)],

I
(n)
αθ := E[−∂2αθ logL(Πn;α, θ)],

I
(n)
θθ := E[−∂2θθ logL(Πn;α, θ)].

Useful notation:

• Iα := Fisher Information of the distribution with pmf pα(j), i.e.,

Iα := −
∞∑
j=1

pα(j) · ∂2α log pα(j) with pα(j) =
α
∏j−1

i=1 (i− α)

j!

• Function3 fα : (−1,∞) → R defined by (don’t need to memorize)

fα : z 7→ ψ(1 + z)− αψ(1 + αz) with ψ(x) = Γ′(x)/Γ(x)

3fα is bijective, strictly increasing, and convex.
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Asymptotic analysis of Fisher Information

Lemma (Leading terms of Fisher Information)

As n→ ∞, we have

I(n)αα ∼ nαIα E[Mαθ], I
(n)
θα ∼ α−1log n, I

(n)
θθ → α−2f ′α(θ/α) < +∞.

• Non-identifiability of θ.

• The optimal convergence rate of estimators of α is n−α/2

• (α, θ) are asymptotically orthogonal.
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Maximum Likelihood Estimator

Given a partition Πn = (U1, U2, . . . ), define (α̂MLE
n , θ̂MLE

n ) by

(α̂MLE
n , θ̂MLE

n ) ∈ argmax
α∈[ϵ,1−ϵ],θ>−α

∏Kn−1
i=1 (θ + iα)∏n−1
i=1 (θ + i)

n∏
j=2

{
j−1∏
i=1

(−α+ i)

}Sn,j

where Sn,j =
∑

i≥1 1{|Ui| = j}, and Kn =
∑

j≥1 Sn,j .

Lemma (Existence and Uniqueness of MLE)

If α ∈ [ϵ, 1− ϵ], (α̂MLE
n , θ̂MLE

n ) uniquely exists with high probability.

• Since {α ∈ [ϵ, 1− ϵ], θ > −α} is not compact, this is not obvious.

• We can relax ϵ to a slowly decreasing array.
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Asymptotic distribution of the MLE

Theorem (when 0 < α < 1, θ > −α)

Let Mαθ = limn→∞Kn/n
α, which is a positive random variable. Then√

nαIα · (α̂MLE
n − α)

stable−→ N (0,Mαθ
−1),

θ̂MLE
n

p−→ α · f−1
α (logMαθ),

where Iα = −
∑∞

j=1 pα(j) · ∂2α log pα(j) with pα(j) =
α
∏j−1

i=1 (i−α)
j! and

fα(z) := ψ(1 + z)− αψ(1 + αz) (∀z > −1)

1 α̂MLE
n is nα/2-consistent, faster than the rate log n of α̂naive

n .

2 N (0,Mαθ
−1) is a variance mixture of centered normals.

However we can construct a confidence interval for α

3 θ̂MLE
n is not consistent, and converges to a non-standard distribution.
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Asymptotic mixed normality of α̂n
For I

(n)
αα := E[−∂2αα logL(Πn;α, θ)] and α̂

MLE
n , we have shown

I(n)αα ∼ nα E[Mαθ]Iα,
√
nαIα · (α̂MLE

n − α) → N (0,Mαθ
−1),

which implies√
I
(n)
αα · (α̂MLE

n − α) ∼
√
nα E[Mαθ]Iα · (α̂MLE

n − α)

=
√
E[Mαθ]×

√
nαIα · (α̂MLE

n − α)

→
√
E[Mαθ]×N (0,Mαθ

−1)

= N (0,E[Mαθ]/Mαθ),

where the variance of the normal is random (asymptotic mixed normality).
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Confidence Interval for α

For the number of urns Kn and α̂MLE
n , it holds that

Kn/n
α a.s.−→Mαθ,

√
nαIα · (α̂MLE

n − α)
stable−→ N (0,Mαθ

−1),

which implies

√
KnIα · (α̂MLE

n − α) =

√
Kn

nα
·
√
nαIα(α̂n − α)

→
√
Mαθ · N (0,Mαθ

−1) = N (0, 1),

where the random variable Mαθ is cancelled out.4

• Normalizing by Kn, α̂
MLE
n converges to normal distribution

• [α̂MLE
n ± 1.96/

√
KnIα̂n ] is 95% confidence interval for α.

4We use an extended Slutzky’s lemma for stable convergence.
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Non-standard asymptotics of θ̂n
For I

(n)
θθ := E[−∂2θθ logL(Πn;α, θ)] and θ̂

MLE
n , we have shown

I
(n)
θθ → α−2f ′α(θ/α), θ̂MLE

n → α · f−1
α (logMαθ) (in probability)

Compare f−1
α (logMαθ) and N (θ, (limn→∞ I

(n)
θθ )−1) = N (θ, α2/f ′α(θ/α)).
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Sketch of proof

• Asymptotically orthogonality of (α, θ) ⇒ Coordinate-wise analysis

• Applying Martingale (Stable) CLT for log-likelihood

• Define the random/deterministic measure Pn/P on N by

∀j ∈ N, Pn(j) :=
Sn,j
Kn

, P(j) :=
α
∏j−1

i=1 (i− α)

j!
,

and, for suitable set of functions F on N, show

sup
f∈F

|Enf − Ef | →P 0.
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Summary

We derive the exact asymptotic distribution of (α̂MLE
n , θ̂MLE

n ) as√
nαIα · (α̂MLE

n − α) → N (0,Mαθ
−1), θ̂MLE

n → α · f−1
α (logMαθ),

from which we conclude

• α̂MLE
n is nα/2-consistent, faster than the rate log n of α̂naive

n .

• α̂MLE
n is asymptotically mixed normal due to the randomness of Mαθ.

•
√
KnIα · (α̂MLE

n − α) → N (0, 1), which leads to confidence interval.

• θ̂MLE
n is not consistent, and the limit distribution is positively skewed.
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Future research 1: Hypothesis testing of α = 0 or not

• We showed

∀α ∈ (0, 1),
√
KnIα · (α̂MLE

n − α) → N (0, 1)

We can test H0 : α < α0 vs H1 : α0 < α < 1 for α0 ∈ (0, 1).

• There is a transition at α = 0.

α = 0 0 < α < 1

Kn Op(log n) Op(n
α)

MLE θ̂n Consistent Inconsistent

Nonparametric Bayes Dirichlet prior Poisson Dirichlet prior

Network data Dense Sparse
...

...
...

• How to test H0 : α = 0 vs H1 : 0 < α < 1?
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Testing of H0 : α = 0 vs H1 : 0 < α < 1

α = 0 α = 1/ log logn 0 < α < 1

Kn Op(log n) Op(
logn2

log logn) Op(n
α)

Limit of Sn,j →P Poisson (θ/j) ? ∼ Knpα(j)

θ̂MLE
n Consistent ? Inconsistent

α̂MLE
n ? nα/2-consistent

We can think of

H0 : α = 0, H1 : α = 1/ log logn

and find some criteria Rn and law F such that Rn → F under H1.
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Future research 2: Prediction of unseen
• For m ∈ N, predict the law Pn,m

α,θ of Kn+m −Kn given a partition Πn

of [n]. For example, if m = 1,

Pn,1
α,θ(1) = Pr(Kn+1 −Kn = 1|Πn) =

θ + αKn

n+ θ

• Plug-in/Bayesian predictive distribution Pn,m
MLE/P

n,m
π is

Pn,m
MLE(·) := Pn,m

α̂MLE
n ,θ̂MLE

n

(·), Pn,m
π (·) :=

∫
α,θ

Pn,m
α,θ (·)dπ(α, θ|Πn).

• Compare Plug-in/Bayesian risk Rn,m
MLE/R

n,m
π , defined by

Rn,m
MLE := En

α,θ

[
KL

(
Pn,m
α,θ || Pn,m

MLE

)]
, Rn,m

π := En
α,θ

[
KL

(
Pn,m
α,θ || Pn,m

π

)]
Existing works ([FN21, FLMP09]) use Pn,m

MLE, but we expect
Rn,m

MLE ≳ Rn,m
π in a regime like m ≳ n.

• Require BvM, asymptotic expansion of KL, Ibragimov–Has’minski
Theory [IHM13], etc.
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[HL15] Erich Häusler and Harald Luschgy.
Stable Convergence and Stable Limit Theorems.
Springer, 2015.

[Hos01] Nobuaki Hoshino.
Applying Pitman’s sampling formula to microdata disclosure risk assessment.
Journal of Official Statistics, 17(4): 499–520, 2001.

[IHM13] Ildar Abdulovich Ibragimov and Rafail Zalmanovich Has’ Minskii.
Statistical estimation: asymptotic theory, volume 16.
Springer Science & Business Media, 2013.

[NRC21] Zacharie Naulet, Judith Rousseau, and François Caron.
Asymptotic analysis of statistical estimators related to multigraphex processes under
misspecification.
arXiv preprint arXiv:2107.01120, 2021.

[Pit06] Jim Pitman.
Combinatorial Stochastic Processes: Ecole d’eté de probabilités de saint-flour
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α-diversity and power-law of EP partition

For α ∈ (0, 1), define the probability mass function pα(j) on N by

∀j ∈ N, pα(j) =
α
∏j−1

i=1 (i− α)

j!
.

Stirling formula implies, as j → ∞,

pα(j) =
α

Γ(1− α)
· Γ(j − α)

Γ(j + 1)
∼ α

Γ(1− α)
j−(1+α) = O(j−(1+α)).

We call it Sibuya distribution of parameter α, denoted by Sib(α).
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α-diversity and power-law of EP partition

• For each α ∈ (0, 1), let Sα be the positive random variable
characterized by

λ ≥ 0, E[Sλ
α] = e−λα

.

• Mittag-Leffler distribution (α) is the law of Mα defined as

Mα := (Sα)
−α

• For each θ > −α, Generalized Mittag-Leffler distribution (α, θ),
denoted by GMtLf(α, θ), is the distribution with its p.d.f. gαθ
characterized by

∀x > 0, gαθ(x) ∝ xθ/αgα(x),

where gα(x) is the p.d.f. of Mittag-Leffler distribution (α).
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When α = 0, θ > 0

Suppose we partitioned n balls into {U1, U2, . . . , UKn}. Then (n+ 1)-th
ball will be assigned to

• urn Ui with prob. |Ui|/(n+ θ).

• a new urn with prob. θ/(n+ θ).

Suppose n balls are partitioned. Then, likelihood is expressed by

θKn−1∏n−1
i=1 (θ + i)

n∏
j=2

{Γ(j)}Sn,j ,

which implies Kn is sufficient for θ.
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When α = 0, θ > 0
Kn can be represented as the sum of independent Bernoulli as

Kn =

n∑
m=1

Xm, Xm ∼ Bernoulli

(
θ

m− 1 + θ

)
.

We can easily show that

Kn

log n
→ θ (a.s.)

Kn − θ log n√
θ log n

→ N (0, 1) (weakly)

For θ̃n := Kn/ log n, we get√
log n

θ
(θ̃n − θ) → N (0, 1) (weakly)

The above asymptotics also holds for MLE θ̂n.
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Stable convergence

(Ω,F , P ): A probability space
Cb(X ): The set of continuous, bounded functions on X .

Definition (Stable convergence)

For a sub σ-field G ⊂ F , a sequence of (X ,B(X ))-valued random
variables (Xn)n≥1 is said to converge G-stably to X if

∀f ∈ L1,∀h ∈ Cb(X ), lim
n→∞

E[f E[h(Xn)|G]] = E[f E[h(X)|G]].

If X is independent of G, Xn is said to converge G-mixing to X.

• Xn → X G-mixing ⇒ Xn → X G-stably ⇒ Xn
d→X.

• When G = {∅,Ω}, these convergences are equivalent.
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Generalization of Slutzky’s lemma to Stable convergence

Lemma ([HL15])

For (X ,B(X )), (Y,B(Y)), a pair of some separable metrizable spaces, let
(Xn)n≥1 be a sequence of (X ,B(X ))-valued random variables and
(Yn)n≥1 be a sequence of (Y,B(Y))-valued random variables. Assume
that there exists a certain random variable X such that Xn → X G-stably.
Then, the following statements hold.

1 Let X = Y. If d(Xn, Yn)
p→ 0, Yn → X G-stably.

2 If Yn
p→Y and Y is G-measurable, (Xn, Yn) → (X,Y ) G-stably.

3 If g : X → Y is (B(X ),B(Y))-measurable and continuous PX -almost
surely, then g(Xn) → g(X) G-stably.
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Stable Martingale Central Limit Theorem

Lemma ([HL15])

Let (Xk)k≥1 be a martingale difference sequence with respect to F and
let (an)n≥1 be a sequence of positive real number with an → ∞. Assume
(Xk)k≥1 satisfies the following two conditions.

1
1
a2n

∑n
k=1 E[X2

k |Fk−1]
p→ η2 for some random variable η ≥ 0.

2
1
a2n

∑n
k=1 E[X2

k1{|Xk| ≥ ϵan}|Fk−1]
p→ 0 for all ϵ > 0.

Then,

1

an

n∑
k=1

Xk → ηN F∞-stably,

where N ∼ N (0, 1) and N is independent of F∞.
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